JEE Series Summation

Calculus Level 2

Find

n = 0 n 2 2 n \large{\displaystyle{\sum _{ n=0 }^{ \infty }{ \cfrac { { n }^{ 2 } }{ { 2 }^{ n } } } }}


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Curtis Clement
May 6, 2015

n = 0 x n = 1 1 x \displaystyle\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} Now differentiate the series (using the quotient rule - see bottom) and multiply by x {x} to obtain n = 0 n x n = x ( 1 x ) 2 \displaystyle\sum_{n=0}^{\infty} n x^n = \frac{x}{(1-x)^2} Now repeat the previous step to obtain: n = 0 n 2 x n = x ( 1 + x ) ( 1 x ) 3 \displaystyle\sum_{n=0}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3} Now let x = 1 2 \frac{1}{2} n = 0 n 2 2 n = 6 \large{\therefore\displaystyle\sum_{n=0}^{\infty} \frac{n^2}{2^n} = 6} Quotient rule: y = u v d y d x = v d u d x u d v d x v 2 y = \frac{u}{v} \implies\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}

Arturo Presa
May 9, 2015

Solution "without using Calculus" : Let's denote S k = n = 1 n k 2 n S_{k}=\sum_{n=1}^{\infty} {\frac{n^{k}}{2^{n}}} (see the remark at the end of the solution) . Since S 0 S_{0} is the sum of a geometric series whose first term is 1 2 \frac{1}{2} and ratio 1 2 \frac{1}{2} , then S 0 = 1 2 1 1 1 2 = 1. S_{0}=\frac{1}{2} \frac{1}{1 - \frac{1}{2}}=1. Now, we can see that S 1 = n = 1 n 2 n = 1 2 + n = 2 n 2 n = 1 2 + n = 1 n + 1 2 n + 1 = S_{1}=\sum_{n=1}^{\infty}{\frac{n}{2^{n}}}=\frac{1}{2}+ \sum_{n=2}^{\infty}{\frac{n}{2^{n}}}=\frac{1}{2}+\sum_{n=1}^{\infty}{\frac{n+1}{2^{n+1}}}= = 1 2 + 1 2 n = 1 n + 1 2 n = 1 2 + 1 2 ( S 1 + S 0 ) =\frac{1}{2}+\frac{1}{2}\sum_{n=1}^{\infty}{\frac{n+1}{2^{n}}}=\frac{1}{2}+\frac{1}{2} (S_{1}+S_{0}) = 1 2 + 1 2 ( S 1 + 1 ) =\frac{1}{2}+\frac{1}{2} (S_{1}+ 1) Solving the resulting equation for S 1 S_{1} we obtain that S 1 = 2. S_{1}=2. In a similar way S 2 = 1 2 + n = 1 ( n + 1 ) 2 2 n + 1 = S_{2}=\frac{1}{2} +\sum_{n=1}^{\infty}{\frac{(n+1)^{2}}{2^{n+1}}}= = 1 2 + n = 1 n 2 2 n + 1 + n = 1 2 n 2 n + 1 + n = 1 1 2 n + 1 = = \frac{1}{2} +\sum_{n=1}^{\infty}{\frac{n^{2}}{2^{n+1}}}+\sum_{n=1}^{\infty}{\frac{2n}{2^{n+1}}}+\sum_{n=1}^{\infty}{\frac{1}{2^{n+1}}}= = 1 2 + 1 2 S 2 + S 1 + 1 2 S 0 = 3 + 1 2 S 2 . = \frac{1}{2} + \frac{1}{2} S_{2}+S_{1}+ \frac{1}{2} S_{0}=3+\frac{1}{2} S_{2}. Solving the resultant equation we get that S 2 = 6 S_{2}=6 .

Apparently we have not used Calculus, but for this algebraic method to work the series with sums S 0 S_{0} , S 1 S_{1} and S 2 S_{2} must be convergent, and the corresponding proof requires the use of Calculus methods.

Remark : Notice that the term of the series corresponding to n = 0 n=0 is zero, and that is why we assume that the first value of n n in the summation is 1 .

Chew-Seong Cheong
May 25, 2016

S = n = 0 n 2 2 n = n = 1 n 2 2 n = n = 0 ( n + 1 ) 2 2 n + 1 = n = 0 n 2 + 2 n + 1 2 n + 1 = 1 2 n = 0 n 2 2 n + n = 0 n 2 n + 1 2 n = 0 1 2 n = 1 2 S + n = 0 x d d x x n x = 1 2 + 1 2 ( 2 ) 1 2 S = x d d x n = 0 x n x = 1 2 + 1 = x d d x 1 1 x x = 1 2 + 1 = x ( 1 x ) 2 x = 1 2 + 1 = 2 + 1 S = 6 \begin{aligned} S & = \sum_{n=\color{#3D99F6}{0}}^\infty \frac{n^2}{2^n} \\ & = \sum_{n=\color{#D61F06}{1}}^\infty \frac{n^2}{2^n} \\ & = \sum_{n=0}^\infty \frac{(n+1)^2}{2^{n+1}} \\ & = \sum_{n=0}^\infty \frac{n^2+2n+1}{2^{n+1}} \\ & = \frac{1}{2} \sum_{n=0}^\infty \frac{n^2}{2^n} + \sum_{n=0}^\infty \frac{n}{2^n} + \frac{1}{2} \sum_{n=0}^\infty \frac{1}{2^n} \\ & = \frac{1}{2}S + \sum_{n=0}^\infty \left. x \frac{d}{dx} x^n \right|_{x=\frac{1}{2}} + \frac{1}{2} (2) \\ \implies \frac{1}{2}S & = \left. x \frac{d}{dx} \sum_{n=0}^\infty x^n \right|_{x=\frac{1}{2}} + 1 \\ & = \left. x \frac{d}{dx} \frac{1}{1-x} \right|_{x=\frac{1}{2}} + 1 \\ & = \left. \frac{x}{(1-x)^2} \right|_{x=\frac{1}{2}} + 1 \\ & = 2 + 1 \\ \implies S & = \boxed{6} \end{aligned}

That's great! :D

Giorgio J Ripani - 4 years, 10 months ago
Julian Poon
May 9, 2015

Non calculus solution:

S = x + 4 x 2 + 9 x 3 + 16 x 4 . . . S=x+4{ x }^{ 2 }+9{ x }^{ 3 }+16{ x }^{ 4 }...

Then S x = x 2 + 4 x 3 + 9 x 4 + 16 x 5 . . . Sx={ x }^{ 2 }+4{ x }^{ 3 }+9{ x }^{ 4 }+16{ x }^{ 5 }...

So S S x = x + 3 x 2 + 5 x 3 + 7 x 3 S-Sx=x+3{ x }^{ 2 }+5{ x }^{ 3 }+7{ x }^{ 3 }

Now, consider x + x 2 + x 3 + x 4 . . . = P P P x = 1 P = 1 1 1 x x+{ x }^{ 2 }+{ x }^{ 3 }+{ x }^{ 4 }...=P\\ P-\frac { P }{ x } =-1\\ P=\frac { -1 }{ 1-\frac { 1 }{ x } }

So, S ( 1 x ) P = 2 x 2 + 4 x 3 + 6 x 4 . . . = 2 ( x 2 + 2 x 3 + 3 x 4 . . . ) S(1-x)-P={ 2x }^{ 2 }+{ 4x }^{ 3 }+6{ x }^{ 4 }...=2\left( { x }^{ 2 }+2{ x }^{ 3 }+3{ x }^{ 4 }... \right) \\

So now, x 2 + 2 x 3 + 3 x 4 . . . = a a x = x 3 + 2 x 4 + 3 x 5 . . . a a x = x 2 + x 3 + x 4 + x 5 . . . = P x \\ { x }^{ 2 }+2{ x }^{ 3 }+3{ x }^{ 4 }...=a\\ ax={ x }^{ 3 }+2{ x }^{ 4 }+3{ x }^{ 5 }...\\ a-ax={ x }^{ 2 }+{ x }^{ 3 }+{ x }^{ 4 }+{ x }^{ 5 }...=P-x

Therefore, S ( 1 x ) P = 2 a = 2 ( P x ) 1 x S(1-x)-P=2a=\frac { 2\left( P-x \right) }{ 1-x }

S = 2 ( P x ) 1 x + P 1 x = 2 ( 1 1 1 x x ) 1 x + 1 1 1 x 1 x S=\frac { \frac { 2\left( P-x \right) }{ 1-x } +P }{ 1-x } =\frac { \frac { 2\left( \frac { -1 }{ 1-\frac { 1 }{ x } } -x \right) }{ 1-x } +\frac { -1 }{ 1-\frac { 1 }{ x } } }{ 1-x }

If you are too lazy to simplify like me, just sub x = 0.5 x=0.5 to get 6 6 . Bye

Logic behind:

To show the logic I used, I'm just going to give a quick clue:

n 2 ( n 1 ) 2 = 2 n 1 S S x 2 n 1 + 1 = 2 n S S x P 2 n ( 2 n 1 ) = 1 a a x = P x { n }^{ 2 }-{ \left( n-1 \right) }^{ 2 }=2n-1\Longrightarrow S-Sx\\ 2n-1+1=2n\Longrightarrow S-Sx-P\\ 2n-(2n-1)=1\Longrightarrow a-ax=P-x

P=x+x^2+x^3+x^4+........ P/x=1+x+x^2+x^3+..... P-P/x=1
P-P/x is not equal to x

Dhanya Jose - 6 years, 1 month ago

Log in to reply

Oh yeah... Thanks for pointing out my typo

Julian Poon - 6 years, 1 month ago
Nishu Sharma
May 5, 2015

Hint:: Try to genralise : n = 0 n 2 x n = x ( x + 1 ) ( 1 x ) 3 \large{\displaystyle{\sum _{ n=0 }^{ \infty }{ { n }^{ 2 }{ x }^{ n } } =\cfrac { x(x+1) }{ { (1-x) }^{ 3 } } }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...