JEE Trigonometry 2

Geometry Level 3

Calculate r = 1 7 cos 2 ( r π 8 ) \sum_{r=1}^{7}\cos^2\left (\dfrac{r\pi}{8} \right )

This problem is a part of My picks for JEE 2
4 6 2 5 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 10, 2017

S = r = 1 7 cos 2 r π 8 = r = 1 7 1 2 ( 1 + cos r π 4 ) = 7 2 + 1 2 ( cos π 4 + cos π 2 + cos 3 π 4 + cos π + cos 5 π 4 + cos 3 π 2 + cos 7 π 4 ) = 7 2 + 1 2 ( 1 2 + 0 1 2 1 + 1 2 + 0 1 2 ) = 7 2 1 2 = 3 \begin{aligned} S & = \sum_{r=1}^7 \cos^2 \frac {r\pi}8 \\ & = \sum_{r=1}^7 \frac 12 \left(1+\cos \frac {r\pi}4 \right) \\ & = \frac 72 + \frac 12 \left({\color{#3D99F6}\cos \frac \pi 4} + \cos \frac \pi 2 + {\color{#D61F06}\cos \frac {3\pi} 4} + \cos \pi + {\color{#3D99F6}\cos \frac {5\pi} 4} + \cos \frac {3\pi} 2 + {\color{#D61F06}\cos \frac {7\pi} 4} \right) \\ & = \frac 72 + \frac 12 \left({\color{#3D99F6}\frac 1{\sqrt 2}} + 0 \ {\color{#D61F06}- \frac 1{\sqrt 2}} - 1 + {\color{#3D99F6}\frac 1{\sqrt 2}} + 0 \ {\color{#D61F06}- \frac 1{\sqrt 2}} \right) \\ & = \frac 72 - \frac 12 = \boxed{3} \end{aligned}

We know that cos ( π θ ) = cos θ \cos( \pi - \theta) = -\cos\theta so ( cos 2 ( π θ ) ) = cos 2 θ ( \cos^{2} ( \pi - \theta)) = \cos^{2} \theta .

So the terms about the middle term i.e. cos 2 π 4 \cos^{2} \frac{\pi}{4} are equal , and equal to 2 ( cos 2 π 8 + cos 2 2 π 8 + cos 2 3 π 8 ) = 2 ( 0.85 + 0.5 + 0.15 ) = 3 2 \cdot ( \cos^{2} \frac{\pi}{8} + \cos^{2} \frac{2\pi}{8} + \cos^{2} \frac{3\pi}{8} ) = 2 \cdot (0.85 + 0.5 + 0.15 ) = 3

Could be a little tougher. I solved this for general n n . Unfortunately, I asked for n = 8 n=8 . Can you think for general n n ?

Pranjal Jain - 6 years, 4 months ago

Log in to reply

Ok, I'll try ¨ \ddot\smile

A Former Brilliant Member - 6 years, 4 months ago

r = 1 n cos 2 ( r π 8 ) \sum_{r=1}^{n}\cos^2\left (\dfrac{r\pi}{8} \right )

r = 1 n 1 + c o s ( r π 4 ) 2 \sum_{r=1}^{n}\dfrac{1 + cos\left (\dfrac{r\pi}{4} \right )}{2}

= n 2 + 1 2 r = 1 n 2 c o s ( r π 4 ) s i n ( π 8 ) 2 s i n ( π 8 ) = \dfrac{n}{2} + \dfrac{1}{2}\sum_{r=1}^{n} \dfrac{2cos\left (\dfrac{r\pi}{4} \right )sin\left (\dfrac{\pi}{8} \right )}{2sin\left (\dfrac{\pi}{8} \right )}

π 4 = x \dfrac{\pi}{4} = x

= n 2 + 1 4 s i n ( π 8 ) r = 1 n sin ( x ( 2 r + 1 ) 2 ) sin ( x ( 2 r 1 ) 2 ) = \dfrac{n}{2} + \dfrac{1}{4sin\left (\dfrac{\pi}{8} \right )}\sum_{r=1}^{n} \sin\left( \dfrac{x(2r + 1)}{2}\right) - \sin\left( \dfrac{x(2r - 1)}{2}\right)

= n 2 + 1 4 s i n ( π 8 ) sin ( 2 n π + π 8 ) sin ( π 8 ) = \dfrac{n}{2} + \dfrac{1}{4sin\left (\dfrac{\pi}{8} \right )} \sin \left( \dfrac{2n\pi + \pi}{8}\right) - \sin \left( \dfrac{\pi}{8}\right)

= n 2 + 1 4 s i n ( π 8 ) 2 cos ( n π + π 8 ) × sin ( n π 8 ) = \dfrac{n}{2} + \dfrac{1}{4sin\left (\dfrac{\pi}{8} \right )} 2\cos \left(\dfrac{n\pi + \pi}{8}\right) \times \sin \left(\dfrac{n\pi}{8}\right)


C = r = 1 n cos r x C = \sum_{r=1}^n \cos rx

i S = r = 1 n i sin r x iS = \sum_{r=1}^n i\sin rx

C + i S = r = 1 n e i r x = 1 e i n x 1 e i x C + iS = \sum_{r=1}^n e^{irx} = \dfrac{ 1 - e^{inx}}{1 - e^{ix}}

C + i S = ( 1 cos n x i sin n x ) ( 1 cos x + i sin x ) 2 2 cos x C + iS = \dfrac{(1 - \cos nx - i \sin nx)( 1 - \cos x + i \sin x)}{2 - 2 \cos x}

C = 1 2 cos ( n + 1 ) x 2 cos ( n 1 ) x 2 2 2 cos x cos x ( n + 1 ) 2 2 cos x C = \dfrac{1}{2} - \dfrac{\cos \dfrac{(n+1)x}{2} \cos \dfrac{(n -1)x}{2}}{2 - 2 \cos x} - \dfrac{\cos x(n + 1)}{2 - 2 \cos x}

r = 1 n 1 + cos r π 8 2 = n 2 + 1 2 cos ( n + 1 ) π 4 2 cos ( n 1 ) π 4 2 2 2 cos x cos π 4 ( n + 1 ) 2 2 cos π 4 \sum_{r=1}^{n} \dfrac{1 + \cos \dfrac{r\pi}{8}}{2} = \dfrac{n}{2} + \dfrac{1}{2} - \dfrac{\cos \dfrac{(n+1)\dfrac{\pi}{4}}{2} \cos \dfrac{(n -1)\dfrac{\pi}{4}}{2}}{2 - 2 \cos x} - \dfrac{\cos \dfrac{\pi}{4}(n + 1)}{2 - 2 \cos \dfrac{\pi}{4}}

U Z - 6 years, 4 months ago

Log in to reply

Hi Megh, if you continue from here

n 2 + 1 4 s i n ( π 8 ) 2 cos ( n π + π 8 ) × sin ( n π 8 ) \dfrac{n}{2} + \dfrac{1}{4sin\left (\dfrac{\pi}{8} \right )} 2\cos \left(\dfrac{n\pi + \pi}{8}\right) \times \sin \left(\dfrac{n\pi}{8}\right)

= n 2 + 1 4 ( cos n π 4 ) + 1 4 ( c o t π 8 ) ( s i n n π 4 ) 1 4 = \dfrac{n}{2} + \frac{1}{4}\cdot( \cos { \frac{n \pi}{4}} ) + \frac{1}{4} \cdot ( cot\frac{\pi}{8} )( sin \frac{n \pi}{4} ) - \frac{1}{4}

which I think will suffice .

A Former Brilliant Member - 6 years, 4 months ago

Nice! That's what I wanted.

Pranjal Jain - 6 years, 4 months ago
Arpit Sah
Jul 21, 2015

cos 2 θ \cos^{2}\theta = c o s 2 ( π 2 θ ) cos^{2}(\frac{\pi}{2}-\theta)

cos 2 ( 7 π 8 ) = s i n 2 ( 3 π 8 \cos^{2}(\frac{7\pi}{8})=sin^{2}(\frac{3\pi}{8} )

cos 2 ( 6 π 8 ) = s i n 2 ( 2 π 8 \cos^{2}(\frac{6\pi}{8})=sin^{2}(\frac{2\pi}{8} )

cos 2 ( 5 π 8 ) = s i n 2 ( 1 π 8 \cos^{2}(\frac{5\pi}{8})=sin^{2}(\frac{1\pi}{8} )

cos 2 θ + sin 2 θ = 1 \cos^{2}\theta + \sin^{2}\theta = 1

cos 2 ( π 2 ) = 0 \cos^{2}(\frac{\pi}{2}) = 0

Therefore,

sin 2 ( 3 π 8 ) + cos 2 ( 3 π 8 ) + sin 2 ( 2 π 8 ) + cos 2 ( 2 π 8 ) + sin 2 ( 1 π 8 ) + cos 2 ( 1 π 8 ) = 3 \sin^{2}(\frac{3\pi}{8}) + \cos^{2}(\frac{3\pi}{8}) +\sin^{2}(\frac{2\pi}{8}) +\cos^{2}(\frac{2\pi}{8}) + \sin^{2}(\frac{1\pi}{8}) + \cos^{2}(\frac{1\pi}{8}) = 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...