Calculate r = 1 ∑ 7 cos 2 ( 8 r π )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know that cos ( π − θ ) = − cos θ so ( cos 2 ( π − θ ) ) = cos 2 θ .
So the terms about the middle term i.e. cos 2 4 π are equal , and equal to 2 ⋅ ( cos 2 8 π + cos 2 8 2 π + cos 2 8 3 π ) = 2 ⋅ ( 0 . 8 5 + 0 . 5 + 0 . 1 5 ) = 3
Could be a little tougher. I solved this for general n . Unfortunately, I asked for n = 8 . Can you think for general n ?
Log in to reply
Ok, I'll try ⌣ ¨
r = 1 ∑ n cos 2 ( 8 r π )
r = 1 ∑ n 2 1 + c o s ( 4 r π )
= 2 n + 2 1 r = 1 ∑ n 2 s i n ( 8 π ) 2 c o s ( 4 r π ) s i n ( 8 π )
4 π = x
= 2 n + 4 s i n ( 8 π ) 1 r = 1 ∑ n sin ( 2 x ( 2 r + 1 ) ) − sin ( 2 x ( 2 r − 1 ) )
= 2 n + 4 s i n ( 8 π ) 1 sin ( 8 2 n π + π ) − sin ( 8 π )
= 2 n + 4 s i n ( 8 π ) 1 2 cos ( 8 n π + π ) × sin ( 8 n π )
C = r = 1 ∑ n cos r x
i S = r = 1 ∑ n i sin r x
C + i S = r = 1 ∑ n e i r x = 1 − e i x 1 − e i n x
C + i S = 2 − 2 cos x ( 1 − cos n x − i sin n x ) ( 1 − cos x + i sin x )
C = 2 1 − 2 − 2 cos x cos 2 ( n + 1 ) x cos 2 ( n − 1 ) x − 2 − 2 cos x cos x ( n + 1 )
r = 1 ∑ n 2 1 + cos 8 r π = 2 n + 2 1 − 2 − 2 cos x cos 2 ( n + 1 ) 4 π cos 2 ( n − 1 ) 4 π − 2 − 2 cos 4 π cos 4 π ( n + 1 )
Log in to reply
Hi Megh, if you continue from here
2 n + 4 s i n ( 8 π ) 1 2 cos ( 8 n π + π ) × sin ( 8 n π )
= 2 n + 4 1 ⋅ ( cos 4 n π ) + 4 1 ⋅ ( c o t 8 π ) ( s i n 4 n π ) − 4 1
which I think will suffice .
Nice! That's what I wanted.
cos 2 θ = c o s 2 ( 2 π − θ )
cos 2 ( 8 7 π ) = s i n 2 ( 8 3 π )
cos 2 ( 8 6 π ) = s i n 2 ( 8 2 π )
cos 2 ( 8 5 π ) = s i n 2 ( 8 1 π )
cos 2 θ + sin 2 θ = 1
cos 2 ( 2 π ) = 0
Therefore,
sin 2 ( 8 3 π ) + cos 2 ( 8 3 π ) + sin 2 ( 8 2 π ) + cos 2 ( 8 2 π ) + sin 2 ( 8 1 π ) + cos 2 ( 8 1 π ) = 3
Problem Loading...
Note Loading...
Set Loading...
S = r = 1 ∑ 7 cos 2 8 r π = r = 1 ∑ 7 2 1 ( 1 + cos 4 r π ) = 2 7 + 2 1 ( cos 4 π + cos 2 π + cos 4 3 π + cos π + cos 4 5 π + cos 2 3 π + cos 4 7 π ) = 2 7 + 2 1 ( 2 1 + 0 − 2 1 − 1 + 2 1 + 0 − 2 1 ) = 2 7 − 2 1 = 3