JEE Trigonometry

Geometry Level 5

A regular n n sided polygon has vertices V 1 , V 2 , , V n V_1, \ V_2, \ \cdots \ , \ V_n .

If V 1 V 2 + V 1 V 3 + + V 1 V 7 csc π n = V 1 V 2 ( 1 + cot π 24 2 ) \dfrac{\overline{V_1 V_2}+\overline{V_1 V_3}+ \cdots \cdots +\overline{V_1 V_7}}{\csc {\dfrac{\pi}{n}}}=\overline{V_1 V_2}\left(\dfrac{1+\cot {\dfrac{\pi}{24}}}{2}\right) then find the value of n n

Assumptions and Source \textbf{Assumptions and Source}

\bullet \ \ \ \ V 1 V i \overline{V_1 V_i} denotes the distance between the first vertex and the i th i^{\text{th}} vertex, where V 1 V_1 is adjacent to V 2 V_2 , which is adjacent to V 3 V_3 and so on.

\bullet \ \ \ \ A similar (but easier) question appeared in the 1994 IITJEE exam 1994 \ \text{IITJEE exam} .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Garg
Aug 24, 2014

This problem can be easily done using argand plane.

Assume a circle of unit radii centered at origin of argand plane.

We know that, roots of equation x n { x }^{ n } -1=0 will lie on that circle and form a regular polygon of n vertices.

Now, distance between two vertices of such polygon is given by,

V 1 V r = 2 sin ( r 1 ) Π n \left| V_{1}\quad Vr \right| =\left| 2\sin { \frac { (r-1)\Pi }{ n } } \right|

So, V 1 V 2 + V 1 V 3 + . . . . . . + V 1 V 7 = 2 sin Π n + 2 sin 2 Π n + . . . . . . + 2 sin 7 Π n \left| V_{1}\quad V_{2} \right| +\left| V_{1}\quad V_{3} \right| +......+\left| V_{1}\quad V_{7} \right| =\left| 2\sin { \frac { \Pi }{ n } } \right| +\left| 2\sin { \frac { 2\Pi }{ n } } \right| +......+\left| 2\sin { \frac { 7\Pi }{ n } } \right|

They form an AP in angle of sine which can be written as

2 ( sin 7 Π 2 n sin 3 Π n ) / sin Π 24 2(\sin { \frac { 7\Pi }{ 2n } } \sin { \frac { 3\Pi }{ n } } )\quad /\quad \sin { \frac { \Pi }{ 24 } }

Now , plugging this value in original equation we get

2 ( sin 7 Π 2 n sin 3 Π n ) / ( sin Π 24 csc Π n ) = 2 sin Π n ( 1 + cot Π 24 2 ) 2(\sin { \frac { 7\Pi }{ 2n } } \sin { \frac { 3\Pi }{ n } } )\quad /\quad (\sin { \frac { \Pi }{ 24 } \csc { \frac { \Pi }{ n } } } )=2\sin { \frac { \Pi }{ n } } (\frac { 1+\cot { \frac { \Pi }{ 24 } } }{ 2 } )

which can be simplified to

sin Π 24 + cos Π 24 sin Π 24 = cos Π 2 n + sin ( 13 Π 2 n Π 2 ) sin Π 2 n \frac { \sin { \frac { \Pi }{ 24 } } +\cos { \frac { \Pi }{ 24 } } }{ \sin { \frac { \Pi }{ 24 } } } =\frac { \cos { \frac { \Pi }{ 2n } } +\sin { (\frac { 13\Pi }{ 2n } -\frac { \Pi }{ 2 } } ) }{ \sin { \frac { \Pi }{ 2n } } }

Comparing angles on both sides of equation we get n = 12 \boxed{n=12}

I`ve jumped several steps as the solution was getting too long but if you want to know anything put it in the comment section.

guess lol ... ... .. ..

math man - 6 years, 9 months ago

Nice! The trig summation can be obtained by applying some geometry .. I think that's what you have done on the argand plane, right?

Pratik Shastri - 6 years, 9 months ago

Log in to reply

Yeah,using euler`s form in complex plane makes the process considerably easier.

Ayush Garg - 6 years, 9 months ago
Aakash Khandelwal
Oct 22, 2015

Consider polygon to be inscribed in a circle of radius R. Hence each edge subtends an angle 2*pi/n at centre. Then use cosine rule to find each V1V3..etc. If radius at their ends make an angle x then its length is 2Rsin(x/2) . Hence we get an sine AP. Now compare RHS AND LHS to get n=12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...