JEE Advanced 2016

Geometry Level 3

k = 1 13 1 sin ( π 4 + ( k 1 ) π 6 ) sin ( π 4 + k π 6 ) = ? \large\sum_{k = 1}^{13}\frac{1}{\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right)\sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right)}= \, ?

2 + 3 2 +\sqrt3 2 ( 3 1 ) 2(\sqrt3 -1) 3 3 3 - \sqrt3 2 ( 3 3 ) 2(3-\sqrt3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
May 9, 2017

k = 1 13 1 sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = k = 1 13 csc π 6 sin π 6 sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = csc π 6 k = 1 13 sin [ ( π 4 + π k 6 ) ( π 4 + π 6 ( k 1 ) ) ] sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = 2 k = 1 13 sin ( π 4 + π k 6 ) cos ( π 4 + π 6 ( k 1 ) ) cos ( π 4 + π k 6 ) sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π 6 ( k 1 ) ) sin ( π 4 + π k 6 ) = 2 k = 1 13 cot ( π 4 + π 6 ( k 1 ) ) cot ( π 4 + π k 6 ) = 2 [ cot π 4 cot ( π 4 + 13 π 6 ) ] = 2 [ 1 cot 5 π 12 ] = 2 [ 1 ( 2 3 ) ] = 2 ( 3 1 ) = 1.464 \begin{aligned} & \displaystyle \sum_{k=1}^{13} \dfrac{1}{\sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \sum_{k=1}^{13} \csc \dfrac{\pi}{6} \cdot \dfrac{\sin \dfrac{\pi}{6}}{\sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \displaystyle \csc \dfrac{\pi}{6} \cdot \sum_{k=1}^{13} \dfrac{\sin \left[ \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) - \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \right] }{ \sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \displaystyle 2 \cdot \sum_{k=1}^{13} \dfrac{ \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) \cos \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) - \cos \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) }{ \sin \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) \sin \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right)} \\ \\ &= \displaystyle 2 \cdot \sum_{k=1}^{13} \cot \left( \dfrac{\pi}{4} + \dfrac{\pi}{6} (k-1) \right) - \cot \left( \dfrac{\pi}{4} + \dfrac{\pi k}{6} \right) \\ \\ &= 2 \left[ \cot \dfrac{\pi}{4} - \cot \left( \dfrac{\pi}{4} + \dfrac{13 \pi}{6} \right) \right] \\ \\ &= 2 \left[ 1 - \cot \dfrac{5 \pi}{12} \right] \\ \\ &= 2 \left[ 1 - (2 - \sqrt{3}) \right] \\ \\ &= 2 ( \sqrt{3} - 1 ) \\ \\ &= \boxed{1.464} \end{aligned}

This problem has already been posted here .

Tapas Mazumdar - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...