JEEometry

Geometry Level 3

Normals are drawn from the point P P with slopes m 1 , m 2 , m 3 m_{1},m_{2},m_{3} to the parabola y ² = 4 x y² = 4 x . If locus of P P with m 1 m 2 = α m_{1}m_{2}= \alpha is a part of parabola itself, find the value of α \alpha .

This one is blast from past. Question is from IIT JEE 2003.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

y 2 = 4 a x y = m x 2 a m a m 3 ( e q u a t i o n o f n o r m a l w i t h s l o p e m ) a = 1 y = m x 2 m m 3 P ( h , k ) . m 3 + ( 2 x ) m k = 0 , r o o t s a r e m 1 , m 2 , m 3 . k = m 1 m 2 m 3 = α m 3 . . . . . . ( 1 ) ( 2 x ) = m 1 m 2 + m 1 m 3 + m 2 m 3 = α m 3 2 ( m 1 + m 2 = m 3 ) m 3 2 = α 2 + x . . . . . . ( 2 ) F r o m ( 1 ) & ( 2 ) : k 2 = α 2 ( α 2 + x ) B u t t h i s i s p a r t o f y 2 = 4 a x α = 2 { y }^{ 2 }=4ax\\ y=mx-2am-a{ m }^{ 3 }\quad (equation\quad of\quad normal\quad with\quad slope\quad 'm')\quad \\ a=1\\ \Rightarrow y=mx-2m-{ m }^{ 3 }\quad \\ P(h,k).\\ \Rightarrow { m }^{ 3 }+(2-x)m-k=0,\quad roots\quad are\quad { m }_{ 1 },{ m }_{ 2 },{ m }_{ 3 }.\\ \Rightarrow k={ m }_{ 1 }{ m }_{ 2 }{ m }_{ 3 }=\alpha { m }_{ 3 }......(1)\\ \Rightarrow (2-x)={ m }_{ 1 }{ m }_{ 2 }+{ m }_{ 1 }{ m }_{ 3 }+{ m }_{ 2 }{ m }_{ 3 }=\alpha -{ { m }_{ 3 } }^{ 2 }\quad (\because { m }_{ 1 }+{ m }_{ 2 }=-{ m }_{ 3 })\\ \Rightarrow { { m }_{ 3 } }^{ 2 }=\alpha -2+x\quad \quad ......(2)\\ From\quad (1)\& (2):\\ { k }^{ 2 }={ \alpha }^{ 2 }(\alpha -2+x)\\ But\quad this\quad is\quad part\quad of\quad { y }^{ 2 }=4ax\\ \Rightarrow \alpha =\boxed { 2 } \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...