JEEometry :5

Geometry Level 4

Transform the equation 14 x 2 4 x y + 11 y 2 36 x + 48 y + 41 = 0 14x^2-4xy+11y^2-36x+48y+41=0 in the form a x 2 + b y 2 = 1 ax^2+by^2=1 by most suitable change of axes.

Find a + b a+b .

Try more here .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prakhar Gupta
Mar 12, 2015

Taking the partial differential of the given equation w.r.t. x x and y y respectively we get:- 28 x 4 y 36 = 0 28x-4y-36=0 4 x + 22 y + 48 = 0 -4x+22y+48=0 Solving these two we get x = 1 , y = 2 x=1, y=-2 We know that the given equation is a conic and from the above procedure we know that the center of conic lies on the point ( 1 , 2 ) (1,-2) . Transforming the equation so that center of conic coincides with origin, we get 14 ( x + 1 ) 2 4 ( x + 1 ) ( y 2 ) + 11 ( y 2 ) 2 36 ( x + 1 ) + 48 ( y 2 ) + 41 = 0 14(x+1)^{2} -4(x+1)(y-2) + 11(y-2)^{2} -36(x+1) + 48(y-2)+ 41=0 On simplifying we get:- 14 x 2 + 11 y 2 4 x y = 25 14x^{2} + 11y^{2} -4xy = 25 Rotating the axis by unknown θ \theta we replace:- x x cos θ + y sin θ x \to x\cos\theta + y\sin\theta y x sin θ y cos θ y \to x\sin\theta - y \cos\theta Plugging in above equation and simplifying we get:- x 2 ( 14 cos 2 θ + 11 sin 2 θ 4 sin θ cos θ ) + y 2 ( 14 sin 2 θ + 11 cos 2 θ + 4 sin θ cos θ ) + x y ( 6 sin θ cos θ + 4 cos 2 θ 4 sin 2 θ ) = 25 x^{2} (14 \cos^{2}\theta + 11\sin^{2} \theta -4\sin\theta\cos\theta) + y^{2}(14 \sin^{2} \theta + 11 \cos^{2}\theta + 4\sin\theta\cos\theta) + xy(6\sin\theta \cos\theta + 4\cos^{2} \theta-4\sin^{2} \theta) = 25 Since we want x y xy term to vanish, we have:- 3 sin 2 θ + 4 cos 2 θ = 0 3\sin2\theta + 4\cos2\theta = 0 Hence tan ( 2 θ ) = 4 3 \tan(2\theta) = \frac{-4}{3} So we get sin 2 θ = 4 5 , cos 2 θ = 3 5 \sin2\theta = \frac{-4}{5} , \cos2\theta = \frac{3}{5} Hence our equation becomes :- 15 x 2 + 10 y 2 = 25 15x^{2} + 10y^{2} =25 3 5 x 2 + 2 5 y 2 = 1 \dfrac{3}{5} x^{2} + \dfrac{2}{5} y^{2} =1

Perfect soluion ☺

Kushal Patankar - 6 years, 3 months ago

Log in to reply

Thanks a lot.

Prakhar Gupta - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...