Joining

Geometry Level 5

In triangle A B C \triangle ABC , let B C = 7 BC=7 , A C = 6 AC=6 and A B = 5 AB=5 . Let D D , E E and F F be the centers of the excircles relatives to B C BC , A C AC and A B AB respectively.

If E F = c a g EF=\dfrac{c \sqrt{a}}{g} , D F = d a b g DF=\dfrac{d\sqrt{ab}}{g} and D E = f b DE=f\sqrt{b} , where a b ab is square free, gcd ( c , g ) = 1 \gcd(c,g)=1 and gcd ( d , g ) = 1 \gcd(d,g)=1 , find a b c d f g abc-dfg .


The answer is 460.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First we find the area of A B C \triangle ABC using Heron's formula, and it's: [ A B C ] = 6 6 [ABC]=6\sqrt{6} . Now, we find the length of the three excircles with the known formulas:

R a = 2 [ A B C ] B C + A B + A C = 12 6 4 = 3 6 R_a=\dfrac{2[ABC]}{-BC+AB+AC}=\dfrac{12\sqrt{6}}{4}=3\sqrt{6} R b = 2 [ A B C ] B C + A B A C = 12 6 6 = 2 6 R_b=\dfrac{2[ABC]}{BC+AB-AC}=\dfrac{12\sqrt{6}}{6}=2\sqrt{6} R c = 2 [ A B C ] B C A B + A C = 12 6 8 = 3 6 2 R_c=\dfrac{2[ABC]}{BC-AB+AC}=\dfrac{12\sqrt{6}}{8}=\dfrac{3\sqrt{6}}{2}

With the lengths of the exradius, we find the area of B D C \triangle BDC , C E A \triangle CEA and A B F \triangle ABF , because the exradius are the altitudes and each side is the base:

[ B D C ] = B C × R a 2 = 7 × 3 6 2 = 21 6 2 [BDC]=\dfrac{BC \times R_a}{2}=\dfrac{7 \times 3\sqrt{6}}{2}=\dfrac{21\sqrt{6}}{2} [ C E A ] = A C × R b 2 = 6 × 2 6 2 = 6 6 [CEA]=\dfrac{AC \times R_b}{2}=\dfrac{6 \times 2\sqrt{6}}{2}=6\sqrt{6} [ A B F ] = A B × R c 2 = 5 × 3 6 2 2 = 15 6 4 [ABF]=\dfrac{AB \times R_c}{2}=\dfrac{5 \times \frac{3\sqrt{6}}{2}}{2}=\dfrac{15\sqrt{6}}{4}

Clearly, if we sum the four areas we obtained, we obtain the area of D E F \triangle DEF :

[ D E F ] = [ A B C ] + [ B D C ] + [ C E A ] + [ A B F ] [DEF]=[ABC]+[BDC]+[CEA]+[ABF] [ D E F ] = 6 6 + 21 6 2 + 6 6 + 15 6 4 = 105 6 4 [DEF]=6\sqrt{6}+\dfrac{21\sqrt{6}}{2}+6\sqrt{6}+\dfrac{15\sqrt{6}}{4}=\dfrac{105\sqrt{6}}{4}

Next, with a little angle chasing, we find out that:

D = B + C 2 \angle D=\dfrac{\angle B + \angle C}{2} , E = A + C 2 \angle E=\dfrac{\angle A + \angle C}{2} and F = A + B 2 \angle F=\dfrac{\angle A + \angle B}{2}

Our goal now is to find the sines of every angle, to do that we first obtain the sines of A B C \triangle ABC using law of cosines, then apply the angle sum and finally the formula for a half angle. We obtain:

sin D = 15 5 \sin \angle D=\dfrac{\sqrt{15}}{5} , sin E = 3 105 35 \sin \angle E=\dfrac{3\sqrt{105}}{35} and sin F = 42 7 \sin \angle F=\dfrac{\sqrt{42}}{7}

At this point we have the area of D E F \triangle DEF and every of its three angles. With law of sines and its formulas for the area of triangle, we will find every side:

[ D E F ] = D E × D F × sin D 2 [DEF]=\dfrac{DE \times DF \times \sin \angle D}{2}

[ D E F ] = D E × E F × sin E 2 [DEF]=\dfrac{DE \times EF \times \sin \angle E}{2}

[ D E F ] = D F × E F × sin F 2 [DEF]=\dfrac{DF \times EF \times \sin \angle F}{2}

Substitute with the known values and simplify:

105 6 4 = D E × D F × 15 10 D E × D F = 105 10 2 \dfrac{105\sqrt{6}}{4}=\dfrac{DE \times DF \times \sqrt{15}}{10} \Rightarrow DE \times DF=\dfrac{105 \sqrt{10}}{2}

105 6 4 = D E × E F × 3 105 70 D E × E F = 35 70 2 \dfrac{105\sqrt{6}}{4}=\dfrac{DE \times EF \times 3\sqrt{105}}{70} \Rightarrow DE \times EF=\dfrac{35 \sqrt{70}}{2}

105 6 4 = D F × E F × 42 14 D F × E F = 105 7 2 \dfrac{105\sqrt{6}}{4}=\dfrac{DF \times EF \times \sqrt{42}}{14} \Rightarrow DF \times EF=\dfrac{105 \sqrt{7}}{2}

To solve that system, multiply the three equations, simplify and let the three sides to be in the left hand side:

( D E × D F × E F ) 2 = 13505625 4 (DE \times DF \times EF)^2=\dfrac{13505625}{4}

Take square root to both sides:

D E × D F × E F = 3675 2 DE \times DF \times EF = \dfrac{3675}{2}

Finally, divide every of the three equations with this one to obtain every side:

E F = 3675 2 105 10 2 = 7 10 2 EF=\dfrac{\frac{3675}{2}}{\frac{105 \sqrt{10}}{2}}=\dfrac{7\sqrt{10}}{2}

D F = 3675 2 35 70 2 = 3 70 2 DF=\dfrac{\frac{3675}{2}}{\frac{35 \sqrt{70}}{2}}=\dfrac{3\sqrt{70}}{2}

D E = 3675 2 105 7 2 = 5 7 DE=\dfrac{\frac{3675}{2}}{\frac{105 \sqrt{7}}{2}}=5\sqrt{7}

Hence, a = 10 a=10 , b = 7 b=7 , c = 7 c=7 , d = 3 d=3 , f = 5 f=5 , g = 2 g=2 and a b c d f g = 460 abc-dfg=\boxed{460} .

Note: if you try to generalize it for sides B C = a BC=a , A C = b AC=b and A B = c AB=c , you would obtain this interesting simple formulas:

d = E F = 2 a b c ( a + b c ) ( a b + c ) d=EF=\dfrac{2a\sqrt{bc}}{\sqrt{(a+b-c)(a-b+c)}} e = D F = 2 b a c ( a + b + c ) ( a + b c ) e=DF=\dfrac{2b\sqrt{ac}}{\sqrt{(-a+b+c)(a+b-c)}} f = D E = 2 c a b ( a + b + c ) ( a b + c ) f=DE=\dfrac{2c\sqrt{ab}}{\sqrt{(-a+b+c)(a-b+c)}}

Good solution. Is my solution good enough

Ronak Agarwal - 6 years, 10 months ago
Ronak Agarwal
Aug 1, 2014

An important trick is to use here half-angle fomuales.

First note that E F = E A + F A , D F = D B + F B , D E = D C + E C EF=EA+FA,DF=DB+FB,DE=DC+EC

We drop the perpendiculars from D , E , F D,E,F on B C , A C , A B BC,AC,AB respectively and name them G , H , I G,H,I respectively.

It is easy to see that H E A = A 2 a n d I F A = A 2 \angle HEA=\frac{A}{2} and \angle IFA=\frac{A}{2} and similarly for others.

So we have E F = E G s e c ( A 2 ) + F I s e c ( A 2 ) = ( r 2 + r 3 ) s e c ( A 2 ) EF=EGsec(\frac{A}{2})+FIsec(\frac{A}{2})=({r}_{2}+{r}_{3})sec(\frac{A}{2}) (i)

We will use r 1 = s ( t a n A 2 ) , r 2 = s ( t a n B 2 ) , r 3 = s ( t a n C 2 ) { r }_{ 1 }=s(tan\frac { A }{ 2 } ),{ r }_{ 2 }=s(tan\frac { B }{ 2 } ),{ r }_{ 3 }=s(tan\frac { C }{ 2 } ) in (i) to get :

EF= s ( s e c ( A 2 ) ) ( ( t a n B 2 ) + ( t a n C 2 ) ) s(sec(\frac{A}{2}))((tan\frac { B }{ 2 } )+(tan\frac { C }{ 2 } ))

We will use t a n B 2 = ( s a ) ( s b ) Δ , t a n C 2 = ( s a ) ( s b ) Δ tan\frac { B }{ 2 } =\frac { (s-a)(s-b) }{ \Delta } ,tan\frac { C }{ 2 } =\frac { (s-a)(s-b) }{ \Delta } to get

E F = ( s e c A 2 ) a s ( s a ) Δ = a s e c A 2 c o t A 2 = a s i n A 2 ( U s i n g t a n A 2 = Δ s ( s a ) ) EF=(sec\frac { A }{ 2 } )\frac { as(s-a) }{ \Delta } =asec\frac { A }{ 2 } cot\frac { A }{ 2 } =\frac { a }{ sin\frac { A }{ 2 } } \quad (Using\quad tan\frac { A }{ 2 } =\frac { \Delta }{ s(s-a) } )

Similarly D F = b s i n B 2 , D E = c s i n C 2 DF=\frac { b }{ sin\frac { B }{ 2 } } ,DE=\frac { c }{ sin\frac { C }{ 2 } }

Finally use s i n A 2 = ( s b ) ( s c ) b c , s i n B 2 = ( s a ) ( s c ) a c , s i n C 2 = ( s a ) ( s b ) a b sin\frac { A }{ 2 } =\sqrt { \frac { (s-b)(s-c) }{ bc } } ,sin\frac { B }{ 2 } =\sqrt { \frac { (s-a)(s-c) }{ ac } } ,sin\frac { C }{ 2 } =\sqrt { \frac { (s-a)(s-b) }{ ab } } to get the values.

Nice solution :D

Alan Enrique Ontiveros Salazar - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...