JOMO 5, Short 6

Given that 7 x y 7 \nmid xy and \text{and} 7 2 x + 3 y 7\mid 2x+3y , find the smallest positive value of k k such that 7 k x + 282 y 7\mid kx + 282y


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aldo Culquicondor
Jul 10, 2014

From 7 x y 7 \nmid xy we get 7 x 7 \nmid x and 7 y 7 \nmid y

From k x + 282 y 0 m o d 7 kx+282y \equiv 0 \mod 7 we get k x + 2 y 3 k x + 6 y 0 m o d 7 kx + 2y \equiv 3kx + 6y \equiv 0 \mod 7

And from 2 x + 3 y 0 2x+3y\equiv 0 we get 4 x + 6 y 0 m o d 7 4x+6y\equiv 0 \mod 7

Then: 3 k x + 6 y 4 x + 6 y m o d 7 3 k x 4 x m o d 7 3 k 4 m o d 7 k 6 m o d 7 3kx+6y\equiv 4x+6y \mod 7 \\ 3kx\equiv 4x \mod 7 \\ 3k \equiv 4 \mod 7 \\ k \equiv 6 \mod 7 \\

How i get kx+2y=3kx +6y?

Firstson Sihombing - 6 years, 10 months ago
Nguyen Thanh Long
Jul 10, 2014

k x + 282 y = 273 y + k x + 9 y m o d ( 7 ) = k x + 9 y m o d ( 7 ) m i n ( k ) = 6 kx+282y=273y+kx+9y \mod(7)=kx+9y \mod(7) \Rightarrow min(k)=\boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...