JOMO 5, Short 7

Evaluate the last 3 digits of 20 1 402 201^{402}


The answer is 401.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Danny He
Jul 12, 2014

201 1 ( m o d 1000 ) 201 \equiv 1 \pmod{1000}

20 1 2 401 ( m o d 1000 ) 201^2 \equiv 401 \pmod{1000}

20 1 3 601 ( m o d 1000 ) 201^3 \equiv 601 \pmod{1000}

20 1 4 801 ( m o d 1000 ) 201^4 \equiv 801 \pmod{1000}

20 1 5 1 ( m o d 1000 ) 201^5 \equiv 1 \pmod{1000}

402 2 ( m o d 5 ) 20 1 402 20 1 2 401 ( m o d 1000 ) 402 \equiv 2 \pmod{5} \Rightarrow 201^{402} \equiv 201^2 \equiv 401 \pmod{1000}

So the last 3 3 digits of 20 1 402 201^{402} are 401 401

Easiest solution to understand.

Things Lazy people does:

1
print ((201**402)%1000)

Nafees Zakir - 6 years, 8 months ago

Log in to reply

did the same! :p

Anik Mandal - 6 years ago

We want to find 20 1 402 ( m o d 1000 ) 201^{402}\pmod{1000} so first we shall apply Euler's Theorem . It states that a ϕ ( n ) 1 ( m o d n ) a^{\phi(n)}\equiv1\pmod n where ϕ ( n ) \phi(n) is Euler's Totient function . It is the sum of all positive integers below n n that are coprime to n n . Fermat's Little Theorem is a special case for when n = p n=p and p p is prime. Thus there are ϕ ( p ) = p 1 \phi(p)=p-1 coprime numbers below.

Anyway using Euler's Product Formula we can compute ϕ ( 1000 ) \phi(1000) . Euler's product formula states that ϕ ( n ) = n p n ( 1 1 p ) \phi(n)=n\prod_{p|n}\left(1-\frac1p\right) where p p is a prime divisor of n n . Therefore ϕ ( 1000 ) = 1000 ( 1 1 2 ) ( 1 1 5 ) = 400 \phi(1000)=1000\left(1-\frac12\right)\left(1-\frac15\right)=400 thus 20 1 402 20 1 400 × 20 1 2 20 1 2 ( m o d 1000 ) 201^{402}\equiv201^{400}\times201^2\equiv201^2\pmod{1000} and simply computing 20 1 2 = 40401 201^2=40401 means that the answer is 401 \boxed{401} .

well bro i did it on the basis of patterns

akash deep - 6 years, 11 months ago

I did exactly the same!

Ángela Flores - 6 years, 11 months ago

We easly solve 20 1 402 m o d 1000 201^{402} \bmod{1000} using that o r d ( 1000 ) = [ 5 3 5 2 ; 2 3 2 2 ] = 100 ord(1000)=[5^3-5^2;2^3-2^2]=100 Thus, 20 1 402 20 1 402 m o d o r d ( 1000 ) 20 1 2 40401 401 m o d 1000 201^{402}\equiv 201^{402\; \bmod{\;ord(1000)}} \equiv 201^2 \equiv 40401 \equiv 401 \bmod{1000} Hence, the answer is 402 \boxed{402}

Andrea Gallese - 6 years, 11 months ago

Log in to reply

Can you tell what is ord()? and can we use it for 201^402 mod 6 (201and 6 are not coprime)

Kapil Sethi - 6 years, 10 months ago
Tom Zhou
Jul 16, 2014

Write 20 1 402 201^{402} as ( 200 + 1 ) 402 (200+1)^{402} . Using the binomial theorem, we get that

( 200 + 1 ) 402 = ( 402 0 ) 20 0 402 + ( 402 1 ) 20 0 401 1 1 + + ( 402 401 ) 20 0 1 1 401 + ( 402 402 ) 1 402 (200+1)^{402}=\binom{402}{0}200^{402}+\binom{402}{1}200^{401}1^1+\cdots+\binom{402}{401}200^11^{401}+\binom{402}{402}1^{402}

Notice that any term involving 200 200 to the power of anything to the power of at least two has last three digits all 0 0 so we only need the two terms have that powers of 200 200 to the first and zeroth. They are ( 402 401 ) 20 0 1 1 401 + ( 402 402 ) 1 402 = 402 200 + 1 = 80401 \binom{402}{401}200^11^{401}+\binom{402}{402}1^{402}=402\cdot200+1=80401 and thus the desired last three digits are 401 401 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...