Given a sequence that starts with a 1 and each term is defined by:
a n = n 3 − 4 n − 1 ,
what are the last 3 digits of the sum of the first 66 terms of this sequence?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yes, that's the expected way....
I'd do emphasis on "tedious multiplication" hahaha. Great :D
From what I understand the sum of n cubes is ( 2 n ( n + 1 ) ) 2 . Could someone prove this? I tried it with different values of n, and it always worked, but I am looking for a proof. Thanks.
Log in to reply
P r o o f b y i n d u c t i o n . A c c o r d i n g t o t h e P r i n c i p l e o f M a t h e m a t i c a l I n d u c t i o n , A s t a t e m e n t a b o u t i n t e g e r s i s t r u e f o r a l l i n t e g e r s g r e a t e r t h a n o r e q u a l t o 1 i f 1 . ) i t i s t r u e f o r i n t e g e r 1 , a n d 2 . ) w h e n e v e r i t i s t r u e f o r a l t h e i n t e g e r s 1 , 2 , . . . , k , t h e n i t i s t r u e f o r t h e i n t e g e r k + 1 . 1 3 + 2 3 + 3 3 + . . . + n 3 = 4 n 2 ( n + 1 ) 2 w h e n n = 1 , 4 1 ( 4 ) = 1 3 1 = 1 T h e r e f o r e , i t i s t r u e f o r t h e i n t e g e r 1 . I f i t i s t r u e f o r i n t e g e r s 1 , 2 , 3 , . . . , k t h e n i t m u s t b e t r u e f o r i n t e g e r k + 1 . A s s u m i n g t h a t t h e f o r m u l a i s t r u e , 1 3 + 2 3 + 3 3 + . . . + ( k + 1 ) 3 = 4 k 2 ( k + 1 ) 2 + ( k + 1 ) 3 = 4 k 2 ( k + 1 ) 2 + 4 ( k + 1 ) 3 = 4 ( k + 1 ) 2 ( k 2 + 4 k + 4 ) = 4 ( k + 1 ) 2 ( k + 2 ) 2 = 4 ( k + 1 ) 2 [ ( k + 1 ) + 1 ] 2 4 ( k + 1 ) 2 [ ( k + 1 ) + 1 ] 2 i s i n t h e f o r m 4 n 2 ( n + 1 ) 2 w h e r e n = k + 1 , s o i t i s t r u e f o r i n t e g e r k + 1 . C o n d i t i o n s 1 a n d 2 a r e f u l f i l l e d . ∴ 1 3 + 2 3 + 3 3 + . . . + n 3 = 4 n 2 ( n + 1 ) 2 f o r n ∈ Z , n ≥ 1 .
Problem Loading...
Note Loading...
Set Loading...
A s t h e s e q u e n c e s t a r t s f r o m a 1 , S U M o f i t s f i r s t 6 6 t e r m s w i l l b e n = 1 ∑ 6 6 a n N o w , n = 1 ∑ 6 6 a n = n = 1 ∑ 6 6 ( n 3 − 4 n − 1 ) = n = 1 ∑ 6 6 n 3 − 4 n = 1 ∑ 6 6 n − n = 1 ∑ 6 6 1 = n = 1 ∑ 6 6 n 3 − 4 n = 1 ∑ 6 6 n − 6 6 = ( 2 6 6 × 6 7 ) 2 − 4 ( 2 6 6 × 6 7 ) − 6 6 = 4 8 7 9 6 1 1 [ A f t e r s o m e t e d i o u s m u l t i p l i c a t i o n ] w h o s e l a s t t h r e e d i g i t s a r e 6 1 1