JOMPC-II

Algebra Level 4

Let a , b a,b and c c be positive reals such that a b c = 1 abc=1 . Find last two digits of the minimum value of ( a + 2015 b ) ( b + 2015 c ) ( c + 2015 a ) (a+2015b)(b+2015c)(c+2015a)


Source: JOMPC.


The answer is 96.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Department 8
Feb 21, 2016

Wrong method :

Using AM-GM:

a + 2015 b 2 2015 a b b + 2015 c 2 2015 b c c + 2015 a 2 2015 c a ( a + 2015 b ) ( b + 2015 c ) ( c + 2015 a ) 8 2015 3 \large{a+2015b\ge 2\sqrt { 2015ab } \\ b+2015c\ge 2\sqrt { 2015bc } \\ c+2015a\ge 2\sqrt { 2015ca } \\ \longrightarrow \left( a+2015b \right) \left( b+2015c \right) \left( c+2015a \right) \ge 8\sqrt { { 2015 }^{ 3 } } } .

But this is not possible because for equality to hold we must have a = 2015 b , b = 2015 c , c = 2015 a a=2015b, b=2015c, c=2015a which is absurd as it will give on multiplying a b c = ( 2015 ) 3 a b c abc=(2015)^3 abc

Correct method :

Using AM-GM:

a + b + b + . . . . . . + b 2015 t i m e s 2016 a b 2015 2016 b + c + c + . . . . . . + c 2015 t i m e s 2016 b c 2015 2016 c + a + a + . . . . . . + a 2015 t i m e s 2016 c a 2015 2016 ( a + 2015 b ) ( b + 2015 c ) ( c + 2015 a ) 2016 3 \large{a+\underbrace { b+b+......+b }_{ 2015\quad times } \ge 2016\sqrt [ 2016 ]{ a{ b }^{ 2015 } } \\ b+\underbrace { c+c+......+c }_{ 2015\quad times } \ge 2016\sqrt [ 2016 ]{ b{ c }^{ 2015 } } \\ c+\underbrace { a+a+......+a }_{ 2015\quad times } \ge 2016\sqrt [ 2016 ]{ c{ a }^{ 2015 } } \\ \longrightarrow \left( a+2015b \right) \left( b+2015c \right) \left( c+2015a \right) \ge { 2016 }^{ 3 }}

And equality holds when a = b = c = 1 a=b=c=1 .

Same solution

P C - 5 years, 3 months ago

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 3 months ago
Manuel Kahayon
Feb 22, 2016

My Method: :)

WLOG, let a b c a \geq b \geq c . By the extreme power of common sense, 2015 a 2015 b 2015 c 2015 a \geq 2015b \geq 2015c .

Then, by Reverse-rearrangement inequality,

( a + 2015 b ) ( b + 2015 c ) ( c + 2015 a ) ( a + 2015 a ) ( b + 2015 b ) ( c + 2015 c ) (a+2015b)(b+2015c)(c+2015a) \geq (a+2015a)(b+2015b)(c+2015c)

( a + 2015 b ) ( b + 2015 c ) ( c + 2015 a ) ( 2016 a ) ( 2016 b ) ( 2016 c ) (a+2015b)(b+2015c)(c+2015a) \geq (2016a)(2016b)(2016c)

( a + 2015 b ) ( b + 2015 c ) ( c + 2015 a ) 201 6 3 a b c (a+2015b)(b+2015c)(c+2015a) \geq 2016^3abc . Since abc = 1,

( a + 2015 b ) ( b + 2015 c ) ( c + 2015 a ) 201 6 3 (a+2015b)(b+2015c)(c+2015a) \geq 2016^3 .

Then, finding the last three digits of 201 6 3 2016^3 is the same as finding the last three digits of 1 6 3 16^3 . So, last three digits of 1 6 3 16^3 are the last three digits of 4096 4096 which are 96 \boxed{96}


By coincidence, I was studying the Reverse-rearrangement inequality when I saw this problem.

Sridhar Sri
Mar 4, 2016

hey you are so good in inequality , keep rocking!

Aswin T.S. - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...