Josh's trigonometric equations

Algebra Level 3

If x x and y y are real values such that 0 x y 18 0 0^{\circ} \leq x-y \leq 180^{\circ} and

sin x + sin y = 1 , cos x + cos y = 2 , \begin{aligned} \sin x + \sin y &= 1, \\ \cos x + \cos y & = \sqrt{2}, \end{aligned}

what is the value (in degrees) of x y x - y ?

This problem is posed by Josh P .


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Given the two equations sin x + sin y = 1 \sin x+\sin y=1 and cos x + cos y = 2 \cos x+\cos y=\sqrt{2} Squaring both the equations, ( sin x + sin y ) 2 = 1 (\sin x+\sin y)^{2}=1 sin 2 x + 2 sin x sin y + sin 2 y = 1 1 \Rightarrow \sin^{2}x+2\sin x\sin y+\sin^{2}y=1------1 and ( cos x + cos y ) 2 = ( 2 ) 2 (\cos x +\cos y)^{2}=(\sqrt{2})^{2} cos 2 x + 2 cos x cos y + cos 2 y = 2 2 \Rightarrow \cos^{2}x+2\cos x\cos y+\cos^{2}y=2------2 Adding the two equations we get, sin 2 x + sin 2 y + 2 sin x sin y + cos 2 x + 2 cos x cos y + cos 2 y = 3 \sin^{2}x+\sin^{2}y+2\sin x\sin y+\cos^{2}x+2\cos x\cos y+\cos^{2}y=3 ( sin 2 x + cos 2 x ) + ( sin 2 y + cos 2 y ) + 2 sin x sin y + 2 cos x cos y = 3 \Rightarrow (\sin^{2}x+\cos^{2}x)+(\sin^{2}y+\cos^{2}y)+2\sin x\sin y+2\cos x\cos y=3 1 + 1 + 2 sin x sin y + 2 cos x cos y = 3 \Rightarrow 1+1+2\sin x\sin y+2\cos x\cos y=3 + 2 sin x sin y + 2 cos x cos y = 1 \Rightarrow +2\sin x\sin y+2\cos x\cos y=1 cos ( x y ) cos ( x + y ) + cos ( x + y ) + cos ( x y ) = 1 \Rightarrow \cos (x-y)-\cos (x+y)+\cos (x+y)+\cos (x-y)=1 2 cos ( x y ) = 1 \Rightarrow 2\cos (x-y)=1 cos ( x y ) = 1 2 \Rightarrow \cos (x-y)=\frac{1}{2} ( x y ) = 6 0 \Rightarrow (x-y)=60^{\circ}

Pranav Arora
Nov 10, 2013

Rewrite the first equation as

2 sin ( x + y 2 ) cos ( x y 2 ) = 1 ( ) \displaystyle 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)=1 \,\,\, (*)

And similarly the second one,

2 cos ( x + y 2 ) cos ( x y 2 ) = 2 ( ) \displaystyle 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)=\sqrt{2} \,\,\, (**)

Now divide both the equations to get,

tan ( x + y 2 ) = 1 2 \displaystyle \tan\left(\frac{x+y}{2}\right)=\frac{1}{\sqrt{2}}

x + y = 2 arctan ( 1 2 ) = 2 arcsin ( 1 3 ) \displaystyle\Rightarrow x+y=2\arctan\left(\frac{1}{\sqrt{2}}\right)=2\arcsin\left(\frac{1}{\sqrt{3}}\right)

Substitute the above value of x + y x+y in ( ) (*) ,

2 1 3 cos ( x y 2 ) = 1 \displaystyle \Rightarrow 2\cdot \frac{1}{\sqrt{3}}\cos\left(\frac{x-y}{2}\right)=1

cos ( x y 2 ) = 3 2 \displaystyle \Rightarrow \cos\left(\frac{x-y}{2}\right)=\frac{\sqrt{3}}{2}

x y = 6 0 \displaystyle \Rightarrow x-y=60^{\circ}

Hence, the answer is 60 \fbox{60} degrees.

Nice! I used the other more common method of squaring and adding.

Tanishq Aggarwal - 7 years, 7 months ago

Log in to reply

Thanks Tanishq! :)

Pranav Arora - 7 years, 7 months ago
Nour Eddin
Jan 29, 2014

By squaring the two equations, we get:

sin 2 x + sin 2 y + 2 sin x sin y = 1 , \sin^2 x + \sin^2 y + 2 \sin x \sin y = 1,

cos 2 x + cos 2 y + 2 cos x cos y = 2 , \cos^2 x + \cos^2 y + 2 \cos x \cos y = 2,

by summing them, we get:

sin 2 x + cos 2 x + sin 2 y + cos 2 y + 2 sin x sin y + 2 cos x cos y = 3 \sin^2 x + \cos^2 x + \sin^2 y + \cos^2 y + 2 \sin x \sin y + 2 \cos x \cos y = 3

since: sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 for any angle θ \theta , therefore:

2 + 2 sin x sin y + 2 cos x cos y = 3 , 2 + 2 \sin x \sin y + 2 \cos x \cos y = 3,

since:

sin u sin v = 1 2 ( cos ( u v ) cos ( u + v ) ) \sin u \sin v = \frac{1}{2}( \cos(u-v) - \cos(u+v) )

cos u cos v = 1 2 ( cos ( u v ) + cos ( u + v ) ) \cos u \cos v = \frac{1}{2}( \cos(u-v) + \cos(u+v) )

for any angles u u and v v , therefore:

2 + cos ( x y ) cos ( x + y ) + cos ( x y ) + cos ( x + y ) = 3 , 2 + \cos(x-y) - \cos(x+y) + \cos(x-y) + \cos(x+y) = 3,

2 cos ( x y ) = 1 , 2 \cos(x-y) = 1,

cos ( x y ) = 1 2 , \cos(x-y) = \frac{1}{2},

and cos ( 60 ° ) = 1 2 , \cos(60°) = \frac{1}{2}, therefore the answer is 60 ° \boxed{60°}

Squaring the first and second equation gives:

sin 2 x + 2 sin x sin y + sin 2 y = 1 \sin^2 x + 2\sin x \sin y + \sin^2 y =1 cos x + 2 cos x cos y + cos 2 y = 2 \cos^x + 2\cos x \cos y + \cos^2 y =2

Adding both equation yields:

sin 2 x + cos 2 x + 2 cos x cos y + 2 sin x sin y + sin 2 y + cos 2 y = 3 \sin^2 x + \cos^2 x + 2\cos x \cos y + 2\sin x \sin y + \sin^2 y + \cos^2 y = 3 2 + 2 cos x cos y + 2 sin x sin y = 3 2 + 2\cos x \cos y + 2\sin x \sin y = 3 2 ( cos x cos y + sin x sin y ) = 1 2(\cos x \cos y + \sin x \sin y) = 1 cos x cos y + sin x sin y = 1 2 \cos x \cos y + \sin x \sin y = \frac{1}{2} cos ( x y ) = 1 2 \cos (x-y) = \frac{1}{2}

Since 0 x y 18 0 0^{\circ} \leq x-y \leq 180^{\circ} , x y x-y can only be equal to 6 0 60^{\circ} .

there's a little mistake..

Mahbub Alam - 7 years, 7 months ago

Typo: cos x cos y + 2 sin x sin y = 1 2 \cos x \cos y + 2\sin x \sin y = \frac{1}{2} should be cos x cos y + sin x sin y = 1 2 \cos x \cos y + \sin x \sin y = \frac{1}{2} .

Filippos Kunastasi - 7 years, 7 months ago
Jian Wang
Nov 11, 2013

sin 2 x + sin 2 y + 2 sin x sin y = 1 \sin^2 x+\sin^2 y+2\sin x\sin y=1 cos 2 x + c o s 2 y + 2 cos x cos y = 2 \cos^2 x+cos^2 y+2\cos x\cos y=2 sin 2 x + sin 2 y + 2 sin x sin y + cos 2 x + c o s 2 y + 2 cos x cos y = 3 \sin^2 x+\sin^2 y+2\sin x\sin y+\cos^2 x+cos^2 y+2\cos x\cos y=3 2 sin x sin y + 2 cos x cos y = cos ( x y ) = 1 2 2\sin x\sin y+2\cos x\cos y=\cos(x-y)=\frac{1}{2}

Therefore, x y = 60 x-y=60

You didn't fully justify why x y = 60 x-y=60 . cos ( α ) = 1 2 \cos(\alpha)=\frac{1}{2} when α \alpha is some multiple of 360 degrees away from 60 degrees, not just 60 degrees. However, from the problem statement that 0 x y 180 0 \leq x-y \leq 180 , it becomes clear that the only feasible solution is 60 degrees, so I guess it's not necessary.

Tanishq Aggarwal - 7 years, 7 months ago
Harf Miranda
Nov 10, 2013

One way to look at it is how we should get x-y from trigonometric identities we know. Recall that cos(x-y)=cosxcosy+sinxsiny. So we need to find a way to end up with this term from the given equations.

Square the first equation --> (sinx)^2+2sinxsiny+(siny)^2=1

Square the 2nd equation --> (cosx)^2+2cosxcosy+(cosy)^2=2

then add the two equations:

(sinx)^2+ (cosx)^2+2sinxsiny+2cosxcosy+(cosy)^2+(siny)^2=3

1+2cos(x-y)+1=3

x-y=60

Edwin Gray
Mar 9, 2019

[sin(x) + sin(y)^2 = sin^2(x) + 2sin(x)sin(y) + sin^2(y) = 1. [cos^2(x) + 2cos(x)cos(y) + cos^2(y) = 2. Adding these equations, and simplifying, 2[cos(x - y) = 1, cos(x - y) = 1/2, x - y = 60 degrees.]

Chew-Seong Cheong
Feb 24, 2019

{ sin x + sin y = 1 . . . ( 1 ) cos x + cos y = 2 . . . ( 2 ) \begin{cases} \sin x + \sin y = 1 & ...(1) \\ \cos x + \cos y = \sqrt 2 & ...(2) \end{cases}

{ ( 1 ) 2 : sin 2 x + 2 sin x sin y + sin 2 y = 1 . . . ( 1 a ) ( 2 ) 2 : cos 2 x + 2 cos x cos y + cos 2 y = 2 . . . ( 2 a ) \begin{cases} (1)^2: & \sin^2 x + 2\sin x \sin y + \sin^2 y = 1 & ...(1a) \\ (2)^2: & \cos^2 x + 2\cos x \cos y + \cos^2 y = 2 & ...(2a) \end{cases}

( 1 a ) + ( 2 a ) : sin 2 x + cos 2 x + 2 sin x sin y + 2 cos x cos y + sin 2 y + cos 2 y = 1 + 2 1 + 2 cos ( x y ) + 1 = 3 cos ( x y ) = 1 2 x y = 60 \begin{aligned} (1a)+(2a): \quad \sin^2 x + \cos^2 x + 2\sin x \sin y + 2\cos x \cos y + \sin^2 y + \cos^2 y & = 1+2 \\ 1 + 2\cos (x-y) + 1 & = 3 \\ \implies \cos (x-y) & = \frac 12 \\ x - y & = \boxed{60}^\circ \end{aligned}

Shubham Namdeo
Nov 16, 2013

Square both the equation and add , we will get the following : cos(x) cos(y)+sin(x) sin(y)=1/2 =>cos(x-y)=1/2 =>x-y=60

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...