Juggling Logs

Algebra Level 2

Suppose

log b p ( log b q x ) = log b r ( log b s x ) \Large \log_{b^p} (\log_{b^q} x) = \log_{b^r} (\log_{b^s} x)

for positive numbers p p , q q , r r , and s s such that p < r p < r .

Which of the following is the best solution for x x ?

Inspiration

x = b q r / ( r p ) s p / ( r p ) \large x = b^{\frac{q^{r/(r-p)}}{s^{p/(r-p)}}} x = b p q r s r p \large x = b^{\frac{pqrs}{r-p}} x = b ( q s ) r p \large x = b^{(\frac{q}{s})^{\frac{r}{p}}} x = b q r p s \large x = b^{\frac{qr}{ps}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Apr 13, 2019

Let x = b n x = b^n . Then

log b p ( log b q x ) = log b r ( log b s x ) \log_{b^p} (\log_{b^q} x) = \log_{b^r} (\log_{b^s} x)

log b p ( log b q b n ) = log b r ( log b s b n ) \log_{b^p} (\log_{b^q} b^n) = \log_{b^r} (\log_{b^s} b^n)

log b p ( log b q b q n q ) = log b r ( log b s b s n s ) \log_{b^p} (\log_{b^q} b^{q\frac{n}{q}}) = \log_{b^r} (\log_{b^s} b^{s\frac{n}{s}})

log b p ( n q ) = log b r ( n s ) \log_{b^p} (\frac{n}{q}) = \log_{b^r} (\frac{n}{s})

( n q ) r = ( n s ) p (\frac{n}{q})^r = (\frac{n}{s})^p

n = q r / ( r p ) s p / ( r p ) n = \frac{q^{r/(r-p)}}{s^{p/(r-p)}}

So x = b n = b q r / ( r p ) s p / ( r p ) x = b^n = b^{\frac{q^{r/(r-p)}}{s^{p/(r-p)}}}

Sachu Verma
Apr 14, 2019

in the end again cancelling both side logs we will get value of x

Make use of the property : logarithm of a to the base b is log(a)/log(b). Then a few algebraic steps lead to the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...