Just 1's

In base 2, what is

0.11111111 2 ? 0.11111111 \ldots _2 ?

1 1 2 2 2 3 \frac{2}{3} 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandmay Patel
Oct 22, 2016

The Concept

A base-b number of the form a n a n 1 a n 2 . . . . . . . . a 3 a 2 a 1 a 0 . c 0 c 1 c 2 c 3 . . . . . . . . . . . . . a_na_{n-1}a_{n-2}........a_3a_2a_1a_0.c_0c_1c_2c_3............. (where the point between a 0 a_0 and c 0 c_0 is the radix point) can be expressed in base-10 form by:

a n × b n + a n 1 × b n 1 . . . . . . . . . . . . . a 1 × b 1 + a 0 × b 0 + c 0 × b 1 + c 1 × b 2 . . . . . . . . . . . . . . . a_n\times b^n+a_{n-1}\times b^{n-1}.............a_1\times b^1+a_0\times b^0+c_0\times b^{-1}+c_1\times b^{-2}...............

Working in this manner,we get the value(in base-10) of the base 2 numeral as:

1 2 + 1 4 + 1 8 . . . . . . . . . . . . . . = 1 \dfrac12+\dfrac14+\dfrac18..............=1

Try Geometric Progressions for understanding the summation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...