Just 2 digits

Which of the following are last 2 digits in decimal representation of:

19 29 39 49 59 69 79 89 99 \Large {19}^{{29}^{{39}^{{49}^{{59}^{{69}^{{79}^{{89}^{99}}}}}}}}

49 69 59 29 39 79 09 19

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the number given be shortened to 1 9 2 9 n 19^{29^n} . Then

1 9 2 9 n 1 9 2 9 n m o d λ ( 100 ) (mod 100) Since gcd 19 , 100 = 1 , Euler’s theorem applies. 1 9 2 9 n m o d 20 (mod 100) Carmichael’s lambda function λ ( 100 ) = 20 1 9 9 n m o d 20 (mod 100) Note that n is odd and let n = 2 k + 1 1 9 8 1 k × 9 m o d 20 (mod 100) 1 9 ( 80 + 1 ) k × 9 m o d 20 (mod 100) 1 9 9 (mod 100) ( 20 1 ) 5 ( 20 1 ) 4 (mod 100) ( 1 ) 5 ( 80 + 1 ) (mod 100) 79 (mod 100) \begin{aligned} 19^{29^n} & \equiv 19^{\color{#3D99F6}29^n \bmod \lambda (100)} \text{ (mod 100)} & \small \color{#3D99F6} \text{Since }\gcd{19, 100}=1 \text{, Euler's theorem applies.} \\ & \equiv 19^{\color{#3D99F6}29^n \bmod 20} \text{ (mod 100)} & \small \color{#3D99F6} \text{Carmichael's lambda function }\lambda (100) = 20 \\ & \equiv 19^{9^{\color{#3D99F6}n} \bmod 20} \text{ (mod 100)} & \small \color{#3D99F6} \text{Note that }n\text{ is odd and let }n=2k+1 \\ & \equiv 19^{81^k \times 9 \bmod 20} \text{ (mod 100)} \\ & \equiv 19^{(80+1)^k \times 9 \bmod 20} \text{ (mod 100)} \\ & \equiv 19^9 \text{ (mod 100)} \\ & \equiv (20-1)^5(20-1)^4 \text{ (mod 100)} \\ & \equiv (-1)^5(-80+1) \text{ (mod 100)} \\ & \equiv \boxed{79} \text{ (mod 100)} \end{aligned}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...