Just 2 random process!

There are m m white and m m black balls in a big bag (where m > 0 m>0 ). Now randomly choose m m balls to move into another big bag.

From 2 bags, a ball is randomly chosen from each bag. Find the probability that both balls have the same color.

m + 1 2 m + 1 \frac{m+1}{2m+1} m 1 2 m + 1 \frac{m-1}{2m+1} m 1 2 m 1 \frac{m-1}{2m-1} m + 1 2 m 1 \frac{m+1}{2m-1}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vaibhav Thakkar
Jul 26, 2018

T h e Q u e s t i o n i s e q u i v a l e n t o f t a k i n g 2 b a l l s a t r a n d o m f r o m t h e b a g a n d f i n d i n g t h e P r o b a b i l t y t h a t b o t h o f t h e m a r e o f s a m e c o l o u r . L e t E b e t h e e v e n t t h a t t w o b a l l a r e t a k e n o u t a n d r a n d o m f r o m t h e b a g a n d t h e y a r e o f s a m e c o l o u r . P ( E ) = m C 2 + m C 2 2 m C 2 = m 1 2 m 1 \\The\ Question\ is\ equivalent\ of\ taking\ 2\ balls\ at\ random\ from\ the\ bag \ and\\ finding\ the\ Probabilty\ that\ both\ of\ them\ are\ of\ same\ colour. \\\\ Let\ E\ be\ the\ event\ that\ two\ ball\ are\ taken\ out\ and\ random\ from\ the\ bag\ and\\ they\ are\ of\ same\ colour. \\\\ \Rightarrow P(E) = \frac{\ ^{m}C_{2}\ +\ ^{m}C_{2}}{^{2m}C_{2}}\\\\ =\ \frac{m-1}{2m-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...