Just 3 integers...

How many decimal digits are there?

10 0 99 9 9 98 \displaystyle100^{99}-99^{98}

200 198 199 197

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

10 0 99 10 0 98 < 10 0 99 9 9 98 < 10 0 99 10 0 97 1 0 198 1 0 196 < 10 0 99 9 9 98 < 1 0 198 1 0 194 1 0 196 ( 100 1 ) < 10 0 99 9 9 98 < 1 0 194 ( 10000 1 ) 99 × 1 0 196 < 10 0 99 9 9 98 < 9999 × 1 0 194 9.9 × 1 0 197 < 10 0 99 9 9 98 < 9.999 × 1 0 197 \begin {matrix} 100^{99}-100^{98} & < & 100^{99} - 99^{98} & < & 100^{99} - 100 ^{97}\\ 10^{198}-10^{196} & < & 100^{99} - 99^{98} & < & 10^{198} - 10^{194}\\ 10^{196}(100-1) & < & 100^{99} - 99^{98} & < & 10^{194}(10000 -1)\\ 99\times 10^{196} &< &100^{99} - 99^{98} & < & 9999\times 10^{194}\\ 9.9\times 10^{197} &< & 100^{99} - 99^{98} & < & 9.999\times 10^{197} \end {matrix}

Therefore, 10 0 99 9 9 98 \space 100^{99} - 99^{98} \space has 198 198 digits.

Sudeshna Pontula
Jan 2, 2015

Find the # of digits in 10 0 99 9 9 98 100^{99} - 99^{98} .

This expression is equivalent to 10 0 98 10 0 98 ( 10 0 99 9 9 98 ) \frac{100^{98}}{100^{98}} (100^{99} - 99^{98}) .

Dividing through, we get: 10 0 98 ( 100 ( 99 100 ) 98 ) 100^{98} \left( 100 - \left(\frac{99}{100} \right)^{98} \right)

Since 0 < 99 100 < 1 0 \lt \frac{99}{100} \lt 1 , hence 0 < ( 99 100 ) 98 < 1 0 \lt \left( \frac{99}{100} \right) ^{98} \lt 1 ,

So 99 < [ 100 ( 99 100 ) 98 ] < 100 99 \lt \left[ 100 - \left( \frac{99}{100} \right) ^{98} \right] \lt 100 . and this number has 2 digits in the integer-part.

Now your resultant number is in this form: 10 0 98 ( 99... ) 100^{98} \left( \mbox{99...} \right)

10 0 98 100^{98} , which has 196 196 zeroes after the 1 1 , when multiplied with 99... 99... will have 196 196 places after the 99 99 , which gives a total of 198 \boxed{198} digits.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...