Just a little difference...exchange of 6 and 5 !!!

Calculus Level 5

Given : 0 2. π d x 31 + 6 c o s x + 5 s i n x = π a \displaystyle \int_{0}^{2.\pi} \dfrac{dx}{31+6cosx+5sinx}=\dfrac{\pi}{a} Find the value of a 2 2 \large \lceil \frac{a^2}{2} \rceil It is not exactly the same problem as this one

Note:

λ \lceil \lambda \rceil denotes ceiling function ( or lowest integer greater than equal to λ \lambda )


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hassan Abdulla
Jun 20, 2018

Using Weierstrass Substitution

let I = 0 2 π d x 31 + 6 c o s x + 5 s i n x = 0 π d x 31 + 6 c o s x + 5 s i n x + π 2 π d x 31 + 6 c o s x + 5 s i n x let t = tan ( x 2 ) cos ( x ) = 1 t 2 1 + t 2 and sin ( x ) = 2 t 1 + t 2 and d x = 2 d t 1 + t 2 I = 0 1 31 + 6 1 t 2 1 + t 2 + 5 2 t 1 + t 2 2 d t 1 + t 2 + 0 1 31 + 6 1 t 2 1 + t 2 + 5 2 t 1 + t 2 2 d t 1 + t 2 = 2 d t 31 + 31 t 2 + 6 6 t 2 + 10 t I = 2 d t 25 t 2 + 10 t + 37 = 2 25 d t ( 5 t + 1 5 ) 2 + 36 25 = 2 36 d t ( 5 t + 1 6 ) 2 + 1 = 2 36 ( 6 5 tan 1 ( 5 t + 1 6 ) ) I = π 15 a = 15 a 2 2 = 225 2 = 112.5 112.5 = 113 \begin{aligned} \text{let I} &=\int_{0}^{2\pi}{\dfrac{dx}{31+6cosx+5sinx}} =\int_{0}^{\pi}{\dfrac{dx}{31+6cosx+5sinx}} +\int_{\pi}^{2\pi}{\dfrac{dx}{31+6cosx+5sinx}} \\ & \color{#D61F06} {\text{let }t =\tan(\frac{x}{2}) \Rightarrow \cos(x) =\frac{1-t^2}{1+t^2} \text{ and } \sin(x) =\frac{2t}{1+t^2} \text{ and } dx =\frac{2dt}{1+t^2} }\\ I & = \int_{0}^{\infty}{\dfrac{1}{31+6\frac{1-t^2}{1+t^2}+5\frac{2t}{1+t^2}}}\frac{2dt}{1+t^2} +\int_{-\infty}^{0}{\dfrac{1}{31+6\frac{1-t^2}{1+t^2}+5\frac{2t}{1+t^2}}}\frac{2dt}{1+t^2} = \int_{-\infty}^{\infty}{\dfrac{2dt}{31+31t^2+6-6t^2+10t}}\\ I &=2\int_{-\infty}^{\infty}{\dfrac{dt}{25t^2+10t+37}}=\frac{2}{25}\int_{-\infty}^{\infty}{\dfrac{dt}{\left (\frac{5t+1}{5} \right )^2+\frac{36}{25}}}=\frac{2}{36}\int_{-\infty}^{\infty}{\dfrac{dt}{\left (\frac{5t+1}{6} \right )^2+1}}=\frac{2}{36}\left .\left (\frac{6}{5} \tan^{-1}\left ( \frac{5t+1}{6} \right )\right |_{-\infty}^{ \infty} \right )\\ I &= \frac{\pi}{15} \end{aligned} \\ a=15 \\ \frac{a^2}{2}=\frac{225}{2}=112.5 \\ \left \lceil 112.5 \right \rceil=113

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...