Given : Find the value of It is not exactly the same problem as this one
Note:
denotes ceiling function ( or lowest integer greater than equal to )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using Weierstrass Substitution
let I I I I = ∫ 0 2 π 3 1 + 6 c o s x + 5 s i n x d x = ∫ 0 π 3 1 + 6 c o s x + 5 s i n x d x + ∫ π 2 π 3 1 + 6 c o s x + 5 s i n x d x let t = tan ( 2 x ) ⇒ cos ( x ) = 1 + t 2 1 − t 2 and sin ( x ) = 1 + t 2 2 t and d x = 1 + t 2 2 d t = ∫ 0 ∞ 3 1 + 6 1 + t 2 1 − t 2 + 5 1 + t 2 2 t 1 1 + t 2 2 d t + ∫ − ∞ 0 3 1 + 6 1 + t 2 1 − t 2 + 5 1 + t 2 2 t 1 1 + t 2 2 d t = ∫ − ∞ ∞ 3 1 + 3 1 t 2 + 6 − 6 t 2 + 1 0 t 2 d t = 2 ∫ − ∞ ∞ 2 5 t 2 + 1 0 t + 3 7 d t = 2 5 2 ∫ − ∞ ∞ ( 5 5 t + 1 ) 2 + 2 5 3 6 d t = 3 6 2 ∫ − ∞ ∞ ( 6 5 t + 1 ) 2 + 1 d t = 3 6 2 ( 5 6 tan − 1 ( 6 5 t + 1 ) ∣ ∣ ∣ ∣ − ∞ ∞ ) = 1 5 π a = 1 5 2 a 2 = 2 2 2 5 = 1 1 2 . 5 ⌈ 1 1 2 . 5 ⌉ = 1 1 3