A beautiful limit

Calculus Level 5

L = lim x 0 a a 2 x 2 x 2 4 x 4 \large L=\lim_{x\to0} \frac{a-\sqrt{a^{2}-x^{2}}-\frac{x^{2}}{4}}{x^{4}}

Let a a be a positive constant such that the limit L L above is finite. Find the value of the product a L aL .

Give your answer correct to 3 significant figures.


The answer is 0.03125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 19, 2017

S = lim x 0 a a 2 x 2 x 2 4 x 4 = lim x 0 a a 1 x 2 a 2 x 2 4 x 4 By Maclaurin series = lim x 0 a a 1 x 2 2 a 2 x 4 8 a 4 O ( x 6 ) x 2 4 x 4 Put a = 2 = lim x 0 2 2 + x 2 4 + x 4 64 + O ( x 6 ) x 2 4 x 4 = lim x 0 x 4 64 + O ( x 6 ) x 4 Divide up and down by x 4 = lim x 0 1 64 + O ( x 2 ) 1 = 1 64 \begin{aligned} S & = \lim_{x \to 0} \frac {a-\sqrt{a^2-x^2}-\frac {x^2}4}{x^4} \\ & = \lim_{x \to 0} \frac {a-a{\color{#3D99F6}\sqrt{1-\frac {x^2}{a^2}}}-\frac {x^2}4}{x^4} & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \frac {a-a{\color{#3D99F6}1-\frac {x^2}{2a^2} - \frac {x^4}{8a^4} - O(x^6)}-\frac {x^2}4}{x^4} & \small \color{#3D99F6} \text{Put }a=2 \\ & = \lim_{x \to 0} \frac {2-2+\frac {x^2}4 + \frac {x^4}{64} + O(x^6)-\frac {x^2}4}{x^4} \\ & = \lim_{x \to 0} \frac {\frac {x^4}{64} + O(x^6)}{x^4} & \small \color{#3D99F6} \text{Divide up and down by }x^4 \\ & = \lim_{x \to 0} \frac {\frac 1{64} + O(x^2)}1 \\ & = \frac 1{64} \end{aligned}

a L = 2 64 = 0.03125 0.03 \implies aL = \frac 2{64} = 0.03125 \approx \boxed{0.03}

But by L'hospital's rule it was coming 1/8.

Sahil Silare - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...