Just a revision

Algebra Level 3

The least positive integer n n for which n + 1 n 1 < 0.2 \sqrt{n+1}-\sqrt{n-1}<0.2 is


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Aug 19, 2015

We have,

n + 1 n 1 < 0.2 \Rightarrow \sqrt{n+1}-\sqrt{n-1}<0.2

n + 1 < 0.2 + n 1 \Rightarrow \sqrt{n+1}<0.2+\sqrt{n-1}

Squaring both sides:

( n + 1 ) 2 < ( 0.2 + n 1 ) 2 \Rightarrow (\sqrt{n+1})^{2}<(0.2+\sqrt{n-1})^{2}

n + 1 < 0.04 + n 1 + 0.4 n 1 \Rightarrow n+1<0.04+n-1+0.4\sqrt{n-1}

n + 1 n + 1 0.04 < 0.4 n 1 \Rightarrow n+1-n+1-0.04<0.4\sqrt{n-1}

1.96 0.04 < n 2 \Rightarrow \frac{1.96}{0.04}<\sqrt{n-2}

4.9 < n 1 \Rightarrow 4.9<\sqrt{n-1}

Squaring both sides:

( 4.9 ) 2 < ( n 1 ) 2 \Rightarrow (4.9)^{2}<(\sqrt{n-1})^{2}

24.01 + 1 < n \Rightarrow 24.01+1<n

25.01 < n \Rightarrow 25.01<n

Therefore , n = 26 n=\color{#3D99F6}{\boxed{26}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...