Just a functional equation

Algebra Level 3

A function f : Z Z f : \mathbb{Z \rightarrow Z} satisfies f ( m + n ) = m n + f ( m ) + f ( n ) + 1 f(m+n) = mn + f(m) +f(n) + 1 .

Find the value of n = 100 100 f ( n ) \displaystyle \sum_{n=-100}^{100}{f(n)} .

Bonus: Find an explicit formula for f ( n ) f(n) .


The answer is 338149.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 23, 2019

P ( m , n ) : f ( m + n ) = m n + f ( m ) + f ( n ) + 1 P ( 0 , 0 ) : f ( 0 ) = 0 + f ( 0 ) + f ( 0 ) + 1 f ( 0 ) = 1 P ( n , n ) : f ( 0 ) = n 2 + f ( n ) + f ( n ) + 1 1 = n 2 + f ( n ) + f ( n ) + 1 f ( n ) + f ( n ) = n 2 2 \begin{array} {rll} P(m,n): & f(m+n) = mn + f(m) + f(n) + 1 \\ P(0,0): & f(0) = 0 + f(0) + f(0) + 1 \\ & \color{#3D99F6} \implies f(0) = - 1 \\ P(-n,n): & {\color{#3D99F6}f(0)} = -n^2 + f(-n) + f(n) + 1 \\ & {\color{#3D99F6}-1} = -n^2 + f(-n) + f(n) + 1 \\ & \color{#3D99F6} \implies f(-n) + f(n) = n^2 - 2 \end{array}

Now we have:

S = n = 100 100 f ( n ) = n = 0 100 f ( n ) + n = 1 100 f ( n ) = n = 0 100 ( f ( n ) + f ( n ) ) f ( 0 ) = n = 0 100 ( n 2 2 ) + 1 = 100 ( 101 ) ( 201 ) 6 2 ( 101 ) + 1 = 338149 \begin{aligned} S & = \sum_{n = -100}^{100} f(n) \\ & = \sum_{n = 0}^{100} f(-n) + \sum_{\color{#3D99F6}n = 1}^{100} f(n) \\ & = \sum_{\color{#D61F06}n = 0}^{100} \big(f(-n) + f(n)\big) \color{#D61F06} - f(0) \\ & = \sum_{n = 0}^{100} \left(n^2 - 2\right) + 1 \\ & = \frac {100(101)(201)}6 - 2(101) + 1 \\ & = \boxed{338149} \end{aligned}

Anson Lee
Mar 23, 2019

We have f ( 0 ) = 1 f(0) = -1 , and also,

f ( n ) = f ( n 2 n ) = 2 n 2 + f ( n ) + f ( 2 n ) + 1 = 2 n 2 + f ( n ) + [ n 2 + 2 f ( n ) + 1 ] + 1 f ( n ) + f ( n ) = n 2 2. f(-n) = f(n-2n) \\ = -2n^2 + f(n) + f(-2n) + 1 \\ = -2n^2 + f(n) + [n^2 + 2f(-n) +1] + 1 \\ \iff f(n) + f(-n) = n^2 - 2.

Therefore,

n = 100 100 f ( n ) = f ( 0 ) + n = 1 100 f ( n ) + f ( n ) = 1 + 100 101 201 6 200 = 338149 . \sum_{n=-100}^{100}{f(n)} = f(0) + \sum_{n=1}^{100}{f(n)+f(-n)} = -1 + \frac{100 \cdot 101 \cdot 201}{6} - 200 = \boxed{338149} \text{.}

Bonus:

A substitution of g ( n ) = f ( n ) f ( n ) g(n) = f(n) - f(-n) shows that g ( n ) g(n) satisfies

g ( m + n ) = g ( m ) + g ( n ) \displaystyle g(m+n) = g(m) + g(n) ,

which is Cauchy's functional equation over the integers/rationals, and can be shown to have the unique family of solutions g ( n ) = c n , c Z g(n) = cn, c \in \mathbb{Z} . This, along with the result above, form simultaneous equations in f ( n ) f(n) and f ( n ) f(-n) , which can be solved to obtain

f ( n ) = n 2 + c n 2 2 ; c , n Z f(n) = \boxed{\frac{n^2 + cn -2}{2}}; c,n \in \mathbb{Z} .

f(0)=f(n-n)=-n^2+f(-n) +f(n)+1 and f(n)=f(0+n)=0+f(0)+f(n)+1=f(0)+f(n)+1. Therefore f(0)=-1 and f(n)+f(-n) =n^2-2. This implies that f(n) is a 2nd. degree polynomial. Let f(n)=a(n^2)+bn+c. Then f(-n)=a(n^2)-bn+c, and so f(n)+f(-n)=2a(n^2)+2c.Therefore 2a=1 and 2c=-2 or a=1/2 and c=-1. This yields f(n)=1/2[n^2+2bn-2]. Therefore the given sum is ((1/2)(2)(100)(101)(201)(1/6))-201 or 338149

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...