What is the limit?

Calculus Level 3

What is the limit lim x 0 sin x x cos x x 3 \displaystyle \lim_{x \to 0} \dfrac{\sin x - x \cos x}{x^3} ?

1 3 \frac{1}{3} 1 2 -\frac{1}{2} 1 1 1 6 \frac{1}{6} The limit does not exist. 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Zico Quintina
Jun 16, 2018

The initial limit is of the indeterminate form 0 0 \frac{0}{0} , so we can apply L'Hôpital's Rule:

lim x 0 sin x x cos x x 3 = lim x 0 x sin x 3 x 2 = lim x 0 sin x 3 x = 1 3 lim x 0 sin x x [ Now use the fact that lim x 0 sin x x = 1 ] = 1 3 \begin{aligned} \lim_{x \to 0} \dfrac{\sin x - x \cos x}{x^3} &= \lim_{x \to 0} \dfrac{x \sin x}{3 x^2} \\ \\ &= \lim_{x \to 0} \dfrac{\sin x}{3 x} \\ \\ &= \dfrac{1}{3} \ \lim_{x \to 0} \dfrac{\sin x}{x} & \small \color{#3D99F6}{\text{[ Now use the fact that } \lim_{x \to 0} \dfrac{\sin x}{x} = 1 \ ]} \\ \\ &= \boxed{\dfrac{1}{3}} \end{aligned}

Chew-Seong Cheong
Jun 16, 2018

Relevant wiki: Maclaurin Series

L = lim x 0 sin x x cos x x 3 Using Maclaurin series = lim x 0 ( x x 3 3 ! + x 5 5 ! x 7 7 ! + ) x ( 1 x 2 2 ! + x 4 4 ! x 6 6 ! + ) x 3 = lim x 0 x 3 3 x 5 30 + x 7 840 x 3 Divide up and down by x 3 = lim x 0 1 3 x 2 30 + x 5 840 = 1 3 \begin{aligned} L & = \lim_{x \to 0} \frac {\sin x - x\cos x}{x^3} & \small \color{#3D99F6} \text{Using Maclaurin series} \\ & = \lim_{x \to 0} \frac {\left(x - \frac {x^3}{3!} + \frac {x^5}{5!} - \frac {x^7}{7!} + \cdots \right) - x \left(1 - \frac {x^2}{2!} + \frac {x^4}{4!} - \frac {x^6}{6!} + \cdots \right)}{x^3} \\ & = \lim_{x \to 0} \frac {\frac {x^3}3 - \frac {x^5}{30} + \frac {x^7}{840} - \cdots}{x^3} & \small \color{#3D99F6} \text{Divide up and down by }x^3 \\ & = \lim_{x \to 0} \frac 13 - \frac {x^2}{30} + \frac {x^5}{840} - \cdots \\ & = \boxed{\dfrac 13} \end{aligned}

Wow great timing sir . I also the same solution using series expansion. :)

Naren Bhandari - 2 years, 11 months ago
Naren Bhandari
Jun 16, 2018

Given that L = lim x 0 sin x x cos x x 3 L = \lim_{x\to 0} \dfrac{\sin x - x\cos x }{x^3} Also we have sin x = x x 3 3 ! + x 5 5 ! + c c c c cos x = 1 x 2 2 ! + x 4 4 ! + sin x x cos x = x x 3 3 ! + x 5 5 ! + x ( 1 x 2 2 ! + x 4 4 ! + ) sin x x cos x = x 3 3 ! + x 5 5 ! + + x 3 2 ! x 4 3 ! + = x 3 ( 1 3 ! + x 2 5 ! + + 1 ! 2 ! x 3 ! + ) lim x 0 x 3 ( 1 3 ! + x 2 5 ! + + 1 ! 2 ! x 3 ! + ) x 3 = 1 6 + 1 2 = 1 3 \sin x =x-\dfrac{x^3}{3!} +\dfrac{x^5}{5!} +\cdots\phantom{cccc} \cos x = 1- \dfrac{x^2}{2!} +\dfrac{x^4}{4!} +\cdots \\ \therefore \sin x - x\cos x =x-\dfrac{x^3}{3!} +\dfrac{x^5}{5!} +\cdots - x\left(1- \dfrac{x^2}{2!} +\dfrac{x^4}{4!} +\cdots \right)\\ \sin x - x\cos x = \dfrac{x^3}{3!} +\dfrac{x^5}{5!} +\cdots +\dfrac{x^3}{2!} -\dfrac{x^4}{3!} +\cdots = x^3\left(\dfrac{1}{3!} + \dfrac{x^2}{5!} +\cdots+ \dfrac{1!}{2!} -\dfrac{x}{3!} +\cdots \right) \implies \\ \lim_{x\to 0} \dfrac{ x^3\left(\dfrac{1}{3!} + \dfrac{x^2}{5!} +\cdots+ \dfrac{1!}{2!} -\dfrac{x}{3!} +\cdots \right) }{x^3} = \dfrac{1}{6} +\dfrac{1}{2} =\dfrac{1}{3}

Markus Michelmann
Jun 16, 2018

Both denominator and numerator of the fraction go to zero for x 0 x \to 0 . Therefore, the rule of l'Hospital can be applied lim x 0 sin x x cos x x 3 = lim x 0 ( sin x x cos x ) ( x 3 ) l’Hospital = lim x 0 x sin x 3 x 2 still 0 0 = lim x 0 ( x sin x ) ( 3 x 2 ) l’Hospital = lim x 0 sin x + x cos x 6 x still 0 0 = lim x 0 ( sin x + x cos x ) ( 6 x ) l’Hospital = lim x 0 2 cos x x sin x 6 = 1 3 \begin{aligned} \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} &= \lim_{x \to 0} \frac{(\sin x - x \cos x)'}{(x^3)'} & |& \text{l'Hospital}\\ &= \lim_{x \to 0} \frac{x \sin x}{3 x^2} & |& \text{still } \tfrac{0}{0} \\ &= \lim_{x \to 0} \frac{(x \sin x)'}{(3 x^2)'} & |& \text{l'Hospital}\\ &= \lim_{x \to 0} \frac{\sin x + x \cos x}{6 x} & |& \text{still } \tfrac{0}{0} \\ &= \lim_{x \to 0} \frac{(\sin x + x \cos x)'}{(6 x)'} & |& \text{l'Hospital}\\ &= \lim_{x \to 0} \frac{2 \cos x - x \sin x}{6} \\ &= \frac{1}{3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...