What is the limit x → 0 lim x 3 sin x − x cos x ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Maclaurin Series
L = x → 0 lim x 3 sin x − x cos x = x → 0 lim x 3 ( x − 3 ! x 3 + 5 ! x 5 − 7 ! x 7 + ⋯ ) − x ( 1 − 2 ! x 2 + 4 ! x 4 − 6 ! x 6 + ⋯ ) = x → 0 lim x 3 3 x 3 − 3 0 x 5 + 8 4 0 x 7 − ⋯ = x → 0 lim 3 1 − 3 0 x 2 + 8 4 0 x 5 − ⋯ = 3 1 Using Maclaurin series Divide up and down by x 3
Wow great timing sir . I also the same solution using series expansion. :)
Given that L = x → 0 lim x 3 sin x − x cos x Also we have sin x = x − 3 ! x 3 + 5 ! x 5 + ⋯ c c c c cos x = 1 − 2 ! x 2 + 4 ! x 4 + ⋯ ∴ sin x − x cos x = x − 3 ! x 3 + 5 ! x 5 + ⋯ − x ( 1 − 2 ! x 2 + 4 ! x 4 + ⋯ ) sin x − x cos x = 3 ! x 3 + 5 ! x 5 + ⋯ + 2 ! x 3 − 3 ! x 4 + ⋯ = x 3 ( 3 ! 1 + 5 ! x 2 + ⋯ + 2 ! 1 ! − 3 ! x + ⋯ ) ⟹ x → 0 lim x 3 x 3 ( 3 ! 1 + 5 ! x 2 + ⋯ + 2 ! 1 ! − 3 ! x + ⋯ ) = 6 1 + 2 1 = 3 1
Both denominator and numerator of the fraction go to zero for x → 0 . Therefore, the rule of l'Hospital can be applied x → 0 lim x 3 sin x − x cos x = x → 0 lim ( x 3 ) ′ ( sin x − x cos x ) ′ = x → 0 lim 3 x 2 x sin x = x → 0 lim ( 3 x 2 ) ′ ( x sin x ) ′ = x → 0 lim 6 x sin x + x cos x = x → 0 lim ( 6 x ) ′ ( sin x + x cos x ) ′ = x → 0 lim 6 2 cos x − x sin x = 3 1 ∣ ∣ ∣ ∣ ∣ l’Hospital still 0 0 l’Hospital still 0 0 l’Hospital
Problem Loading...
Note Loading...
Set Loading...
The initial limit is of the indeterminate form 0 0 , so we can apply L'Hôpital's Rule:
x → 0 lim x 3 sin x − x cos x = x → 0 lim 3 x 2 x sin x = x → 0 lim 3 x sin x = 3 1 x → 0 lim x sin x = 3 1 [ Now use the fact that x → 0 lim x sin x = 1 ]