Just a small twist

Calculus Level 4

0 π 4 ( tan 2016 ( x ) + tan 2014 ( x ) ) d ( x x 1 ! + x 2 2 ! x 3 3 ! + ) \large{\int^{\frac{\pi}{4}}_{0} (\tan^{2016} (x)+\tan^{2014} (x))d(x-\frac{\lfloor x \rfloor}{1!}+\frac{\lfloor x \rfloor^{2}}{2!}-\frac{\lfloor x \rfloor^3}{3!}+\ldots)}

If the value of the integral above equals to a b \frac ab for coprime positive integers, find the value of a + b a+b .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kunal Gupta
Jun 20, 2015

As π 4 < 1 \dfrac{\pi}{4} <1 ,hence [ x ] , [ x ] 2 , . . . . . . [x], [x]^2,...... are all zero.
So, 0 π 4 ( tan 2016 ( x ) + tan 2014 ( x ) ) d ( x [ x ] 1 ! + [ x ] 2 2 ! [ x ] 3 3 ! + . . . . ) = 0 π 4 ( tan 2016 ( x ) + tan 2014 ( x ) ) d x \displaystyle \int^{\frac{\pi}{4}}_{0} (\tan^{2016} (x)+\tan^{2014} (x))d(x-\frac{[x]}{1!}+\frac{[x]^{2}}{2!}-\frac{[x]^3}{3!}+....) = \displaystyle \int^{\frac{\pi}{4}}_{0} (\tan^{2016} (x)+\tan^{2014} (x))dx 0 π 4 ( tan 2014 ( x ) ( 1 + tan 2 ( x ) ) d x = 0 π 4 ( tan 2014 ( x ) ( sec 2 ( x ) ) d x \displaystyle \int^{\frac{\pi}{4}}_{0} (\tan^{2014} (x)(1+ \tan^{2}(x) )dx = \displaystyle \int^{\frac{\pi}{4}}_{0} (\tan^{2014} (x)(\sec^2 (x) )dx = tan 2015 x 2015 = \dfrac{\tan^{2015}{x}}{2015} which evaluates to 1 2015 \dfrac{1}{2015} , so answer is: 2016 \boxed{\boxed{ 2016}}

It can be also derived that

I n + I n 2 = 1 n 1 I_n + I_{n-2} = \dfrac{1}{n-1}

I n = 0 π 4 tan n x d x I_n = \displaystyle \int_{0}^{\frac{\pi}{4}} \tan^nx dx

Vishwak Srinivasan - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...