If x = − 2 0 2 0 . What can we say about the number y 3 + y 2 + y , where
y = 6 1 ( 2 3 2 3 3 8 1 x 2 − 4 2 x + 9 − 2 7 x + 7 − 3 3 8 1 x 2 − 4 2 x + 9 − 2 7 x + 7 4 3 2 − 2 ) ?
Note Try to do it without using calculators.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let z = 3 8 1 x 2 − 4 2 x + 9 − 2 7 x + 7 . Rearranging gives ( z + 2 7 x − 7 ) 2 = 9 ( 8 1 x 2 − 4 x + 9 ) . Solving for x gives x = 5 4 z − z 2 + 1 4 z + 3 2 . With x = − 2 0 2 0 , we have − 2 0 2 0 = 5 4 z − z 2 + 1 4 z + 3 2 ⟹ z 2 − 1 0 9 0 9 4 z − 3 2 = 0 ⟹ z − z 3 2 = 1 0 9 0 9 4 On the other hand, we can express y in terms of z , y = 6 1 ( 2 3 2 3 z − 3 z 4 ⋅ 3 2 − 2 ) ⟹ 3 4 6 y + 2 = 3 z − 3 z 3 3 2 Cube both sides gives 4 ( 6 y + 2 ) 3 0 4 ( 6 y + 2 ) 3 0 5 4 y 3 + 5 4 y 2 + 5 4 y − 1 0 9 0 8 0 0 y 3 + y 2 + y = = = = ( z − z 3 2 ) − 3 ⋅ 3 4 ( 6 y + 2 ) ⋅ 3 3 2 1 0 9 0 9 4 − 6 ( 6 y + 2 ) 0 5 4 1 0 9 0 8 0 = 2 0 2 0
Likewise, we can generalize this to:
If y = 6 1 ( 2 3 2 3 3 8 1 x 2 − 4 2 x + 9 − 2 7 x + 7 − 3 3 8 1 x 2 − 4 2 x + 9 − 2 7 x + 7 4 3 2 − 2 ) then y 3 + y 2 + y = − x .
Problem Loading...
Note Loading...
Set Loading...
Define u = 3 3 8 1 x 2 − 4 2 x + 9 and v = 2 7 x − 7 . It is easy to see that ( u − v ) ( u + v ) = 3 2 . ( ∗ )
Then we can write the number y in the form y = 6 1 ( 2 2 / 3 3 u − v − 3 u − v 4 3 2 − 2 ) . Then y + 3 1 = 6 1 ( 2 2 / 3 3 u − v − 3 u − v 4 3 2 ) . Multiplying the term 3 u − v 4 3 2 by 3 u + v 3 u + v , and using the property (*) to simplify we get y + 3 1 = 6 1 ( 2 2 / 3 3 u − v − 2 2 / 3 3 u + v ) = 6 2 2 / 3 ( 3 u − v − 3 u + v ) Raise both sides of the last equation to the third power and simplify. Then you get ( y + 3 1 ) 3 = − x + 2 7 7 − 3 2 ( y + 3 1 ) Or, equivalently ( y + 3 1 ) 3 + 3 2 ( y + 3 1 ) = − x + 2 7 7 Expanding the left side and combining like terms we get, y 3 + y 2 + y + 2 7 7 = − x + 2 7 7 Hence, y 3 + y 2 + y = − x = 2 0 2 0 and, therefore, y 3 + y 2 + y is a real number in the interval [ 2 0 0 0 , 3 0 0 0 ) .