Just an angle 2

Geometry Level 4

Refer to the above figure. You are given A P B = 6 0 \angle APB=60^{\circ} .

If 3 A P + 2 P B = E F \large{3AP+2PB= \sqrt{\frac{E}{F}}} , where E , F E,F are co-prime integers, find E + F E+F .


The answer is 1447.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Louis W
Sep 24, 2015

I'm usually a fan of trig, but it is absolutely unnecessary here. As in the above picture, extend A C \overline{AC} and P B \overline{PB} until they meet at Q. Since m A P B = 60 m\angle APB=60 , then m A Q P = 30 m\angle AQP=30 and m Q C B = 60 m\angle QCB=60 .

You now have two 30-60-90 triangles, which means if you know one side you can know all sides (if you are unfamiliar, the side opposite the 30 = a, the side opposite the 60 = a 3 \sqrt{3} , the side opposite the 90 = 2a). So:

1) B C = 3 C Q = 6 BC=3 \color{#D61F06}{\Rightarrow} \color{#333333} CQ=6 and B Q = 3 3 BQ=3\sqrt{3}

2) A Q = 8 A P = 8 3 AQ=8 \color{#D61F06}{\Rightarrow} \color{#3D99F6}{AP=\frac{8}{\sqrt{3}}} and P Q = 16 3 PQ=\frac{16}{\sqrt{3}}

3) P B = P Q B Q = 16 3 3 3 = 7 3 \color{#3D99F6}{PB}\color{#333333}=PQ-BQ=\frac{16}{\sqrt{3}}-3\sqrt{3}\color{#3D99F6}{=\color{#3D99F6}\frac{7}{\sqrt{3}}}

Finally, 3 A P + 2 P B = 38 3 = 1444 3 = E F E + F = 1447 . 3AP+2PB=\frac{38}{\sqrt{3}}=\sqrt{\frac{1444}{3}}=\sqrt{\frac{E}{F}} \color{#D61F06}{\Rightarrow}\color{#333333} E+F=\color{#D61F06}{1447}\color{#333333}.\space\space\space\Box

Note: Scout's honor, I did not see the hint from Akshat Sharda when I came up with this :-)

Wow .......

Andy Low - 5 years, 8 months ago

I would've loved the trig solution though.

Or should I put it up? Coz I solved using trig

Mehul Arora - 4 years, 11 months ago
Chew-Seong Cheong
Sep 22, 2015

Let P C = x PC = x and A P C = θ \angle APC = \theta , then using sine rule, we have:

x sin 9 0 = x = 2 sin θ = 3 sin ( 6 0 θ ) 2 ( sin ( 6 0 θ ) ) = 3 sin θ 2 ( 3 2 cos θ 1 2 sin θ ) = 3 sin θ 3 cos θ sin θ = 3 sin θ 3 cos θ = 4 sin θ tan θ = 3 4 A P = 2 tan θ = 8 3 C P B = 6 0 θ tan ( 6 0 θ ) = 3 3 4 1 + 3 4 = 3 3 7 P B = 2 tan ( 6 0 θ ) = 7 3 2 A P + 3 P B = 24 3 + 14 3 = 38 3 = 1444 3 E + F = 1447 \begin{aligned} \frac{x}{\sin 90^\circ} = x & = \frac{2}{\sin{\theta}} = \frac{3}{\sin{(60^\circ - \theta)}} \\ \Rightarrow 2(\sin{(60^\circ - \theta)}) & = 3\sin{\theta} \\ 2\left(\frac{\sqrt{3}}{2}\cos \theta - \frac{1}{2} \sin \theta\right) & = 3 \sin \theta \\ \sqrt{3}\cos \theta - \sin \theta & = 3 \sin \theta \\ \sqrt{3}\cos \theta & = 4 \sin \theta \\ \tan \theta & = \frac{\sqrt{3}}{4} \\ \\ AP & = \frac{2}{\tan \theta} = \frac{8}{\sqrt{3}} \\ \\ \angle CPB & = 60^\circ - \theta \\ \tan (60^\circ - \theta) & = \frac{\sqrt{3} - \frac{\sqrt{3}}{4} }{1+\frac{3}{4}} = \frac{3 \sqrt{3}}{7} \\ \\ PB & = \frac{2}{\tan (60^\circ - \theta)} = \frac{7}{\sqrt{3}} \\ \\ \Rightarrow 2AP + 3PB & = \frac{24}{\sqrt{3}} + \frac{14}{\sqrt{3}} = \frac{38}{\sqrt{3}} = \sqrt{\frac{1444}{3}} \\ \\ \Rightarrow E + F & = \boxed{1447} \end{aligned}

L e t C A B = α , C B A = β , S i n P A B = C o s α , S i n P B A = C o s β . In cyclic quadrilateral A P B C , P = 60 , C = 120 Applying Cos Rule to all in Δ A B C , A B 2 = 2 2 + 3 2 2 2 3 C o s 120 = 19. C o s α = 2 2 + 19 3 2 2 2 19 = 7 2 19 S i n P A B = 7 2 19 . C o s β = 3 2 + 19 2 2 2 3 19 = 4 19 S i n P B A = 4 19 . 19 S i n 60 = P A S i n P B A = P B S i n P A B 3 P A = 24 3 , a n d 2 P B = 14 3 Let ~\angle~CAB=\alpha, ~~~\angle~CBA=\beta,\\ \implies~SinPAB=Cos\alpha,~~~SinPBA=Cos\beta.\\ \text{In cyclic quadrilateral }~APBC,~\angle~P=60,~~\therefore~\angle~C=120 \\ \text{Applying Cos Rule to all in } \Delta ABC,\\ AB^2=2^2+3^2 - 2*2*3*Cos120=19.\\ Cos\alpha=\dfrac{2^2+19 - 3^2}{2*2*\sqrt{19}}=\dfrac{7}{2*\sqrt{19}}\\ \implies~\color{#3D99F6}{ SinPAB=\dfrac{7}{2*\sqrt{19}}}. \\ Cos\beta=\dfrac{3^2+19 - 2^2}{2*3*\sqrt{19}}=\dfrac{4}{\sqrt{19}}\\ \implies~\color{#3D99F6}{ SinPBA=\dfrac{4}{\sqrt{19}}}. \\ \dfrac{\sqrt{19}}{Sin60 }=\dfrac{PA}{SinPBA}=\dfrac{PB}{SinPAB} \\ \therefore~3*PA=\dfrac{24}{\sqrt3},~~and~~ 2*PB =\dfrac{14}{\sqrt3} \\ 3 P A + 2 P B = 38 3 = 3 8 2 3 . 3 8 2 + 3 = 1447 \implies~3*PA+2*PB= \dfrac{38}{\sqrt3} =\sqrt{\dfrac{38^2}3}.\\ 38^2+3=\color{#D61F06}{1447}

Niranjan Khanderia - 5 years, 7 months ago
Akshat Sharda
Sep 23, 2015

Hint :

\rightarrow Produce B C \overline{BC} and P A \overline{PA} to meet at a point(say D D ) and then the question is all yours.

\rightarrow Just apply a bit of Trigonometry and Pytagoras Theorem and solve it.

E a s y ! ! Easy!! , isn't it ?

Curtis Clement
Sep 23, 2015

Firstly drop a perpendicular line from A which intersects PB at u and then draw a line from C that is perpendicular to the line segment AU and intersects AU at V. Now P A U = 30 V A C = 60 \angle PAU = 30 \rightarrow \angle VAC = 60 . Also, notice that BCVU is a rectangle as it contains four 90 degree angles. Let AP = x and PB = y then using special triangle (as APU and AVC are both half an equilateral triangle): A U = x 3 2 = A V + V U = 2 s i n 30 + 3 = 1 + 3 = 4 \ AU = \frac{x \sqrt{3}}{2} = AV + VU = 2 sin30 +3 = 1+3 = 4 x = 8 3 \Rightarrow\ x = \frac{8}{\sqrt{3}} Similarly: P B = P U + U B = P U + V C = x 2 + 2 s i n 60 = 4 3 + 3 = 7 3 \ PB = PU +UB = PU +VC = \frac{x}{2} + 2sin60 = \frac{4}{\sqrt{3}} + \sqrt{3} = \frac{7}{\sqrt{3}} 3 A P + 2 P B = 3 x + 2 y = 38 3 = 1444 3 \Rightarrow\ 3AP +2PB = 3x+2y = \frac{38}{\sqrt{3}} = \sqrt{\frac{1444}{3}} E + F = 1447 \therefore\ E+F = 1447

Razzi Masroor
Jan 27, 2020

Note that PACB is cyclic so PA CB+AC PB = PC AB. Using the law of cosines, AB^2 = AC^2+BC^2 - 2AC BC cos(angle ACB). Because PACB is cyclic we know that angle ACB = 180 - angle APB = 120. So AB^2 = 2^2+3^2-2 2 3 (-1/2) = 19. We have that AB = sqrt(19). Since PACB is cyclic, we also know that P is on the circumcircle of ACB which is the circumcircle of PACB. Since P is on the circumcircle of ACB and angle PAC is right, PC is the diameter of the circumcircle of ACB. We know that for a triangle ABC with side lengths a, b, and c we have (AB BC AC)/4[ABC] = R where R is the circumradius of ACB. We know that [ACB] = 1/2 AC BC sin(angle ACB) = 1/2 * 2 3 * sqrt(3) / 2 = (3sqrt(3))/2. So R = (sqrt(19) * 2* 3) / (4 * (3sqrt(3))/2 ) = sqrt(19)/sqrt(3). So PC = 2R = 2sqrt(19)/sqrt(3). Now finally we have that the answer is PC * AB = 2sqrt(19)/sqrt(3) * sqrt(19) = sqrt(1444/3) and thus E+F = 1447.

Ayush G Rai
Jun 25, 2016

I used only ptolemy's theorem and sin rule but not trig.

sin rule is trig?

Razzi Masroor - 1 year, 4 months ago

let x = A P x = |AP| and y = P B y = |PB| :

From pythagorean theorem (forming two triangles A P C \bigtriangleup APC and C P B \bigtriangleup CPB sharing the same hypotenuse P C |PC| ):

x 2 + 2 2 = y 2 + 3 2 x^2 + 2^2 = y^2 + 3^2

x 2 y 2 = 5 x^2 - y^2 = 5

Let θ 1 = A P C \theta_1 = \angle APC and θ 2 = C P B \theta_2 = \angle CPB such that θ 1 + θ 2 = 6 0 \theta_1 + \theta_2 = 60^\circ :

3 2 = s i n ( 60 θ 1 ) s i n θ 1 = 3 2 c o t θ 1 1 2 \frac{3}{2} = \frac{ sin(60 - \theta_1)}{sin \theta_1} = \frac{\sqrt{3}}{2} cot \theta_1 - \frac{1}{2}

Also:

y x = c o s ( 60 θ 1 ) c o s θ 1 = 3 2 t a n θ 1 + 1 2 \frac{y}{x} = \frac{cos(60 - \theta_1)}{cos \theta_1} = \frac{\sqrt{3}}{2} tan \theta_1 + \frac{1}{2}

From these, we can get:

t a n θ 1 = 3 4 tan \theta_1 = \frac{\sqrt{3}}{4}

and

y = 7 8 x y = \frac{7}{8} x

which yields to

x = 8 3 3 x = \frac{8\sqrt{3}}{3}

y = 7 3 3 y = \frac{7\sqrt{3}}{3}

However, we are to solve 3 x + 2 y 3x + 2y , which is 1444 3 \sqrt{\frac{1444}{3}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...