Just another 2017 problem

Algebra Level 3

x x , , y y are distinct positive integers. Can we say with certainty that x 2017 y 2017 x^{2017} - y^{2017} will be exactly divisible by x y x - y ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
May 13, 2017

x y x n y n n N \displaystyle x - y \mid x^n - y^n \ \forall \ n \in \mathbb{N}

By generalizing we can see that this statement is true; we will use proof by induction.

1. \displaystyle \textbf{1.} Show P ( 1 ) \displaystyle P(1) is true.

x 1 y 1 \displaystyle x^1 - y^1 is divisible by x y \displaystyle x - y

2. \displaystyle \textbf{2.} Assume statement is true for P ( k ) \displaystyle P(k) .

x y x k y k \displaystyle x - y \mid x^k - y^k

3. \displaystyle \textbf{3.} Show that the statement is true for P ( k + 1 ) \displaystyle P(k + 1) .

x k + 1 y k + 1 \displaystyle x^{k + 1} - y^{k + 1}

= ( x y + y ) x k y y k \displaystyle = (x - y + y)x^k - y \cdot y^k

= x x k y x k + y x k y y k \displaystyle = x \cdot x^k - y \cdot x^k + y \cdot x^k - y \cdot y^k

= x k ( x y ) + y ( x k y k ) \displaystyle = x^k(x - y) + y(x^k - y^k)

x y x k ( x y ) + y ( x k y k ) \displaystyle x - y \mid x^k(x - y) + y(x^k - y^k)

P ( k + 1 ) \displaystyle P(k + 1) is true, so P ( n ) \displaystyle P(n) is true for all n N \displaystyle n \in \mathbb{N} .

Hence, x y x 2017 y 2017 \displaystyle x - y \mid x^{2017} - y^{2017}

Relevant wiki: Remainder Factor Theorem - Basic

Let f(x)=x^2017 - y^2017. If (x-y) is a factor then y is a root hence f(y)=0 according to the factor theorem. As f(y)=y^2017 - y^2017 = 0, the statement must be true. This also works for f(y)=x^2017 - y^2017 following the same steps.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...