Just another geometric series

Algebra Level pending

For w = e i ( π / n ) w=e^{i(\pi/n)} , if the value of 1 + w + w 2 + + w n 1 1+w+w^2+\ldots +w^{n-1} equals to 1 + i cot ( π k n ) , 1+i \cot \left( \frac\pi{kn} \right), find k k .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 10, 2021

Taking the geometric series:

Σ k = 1 n w k 1 = Σ k = 1 n ( e i π / n ) k 1 = 1 ( e i π / n n ) 1 e i π / n = 1 ( 1 ) 1 e i π / n = 2 1 e i π / n \Large \Sigma_{k=1}^{n} w^{k-1} = \Sigma_{k=1}^{n} (e^{i\pi/n})^{k-1} = \frac{1-(e^{i\pi/n \cdot n})}{1-e^{i\pi/n}} = \frac{1-(-1)}{1-e^{i\pi/n}} = \frac{2}{1-e^{i\pi/n}} ;

or 2 [ 1 cos ( π / n ) ] i sin ( π / n ) [ 1 cos ( π / n ) ] + i sin ( π / n ) [ 1 cos ( π / n ) ] + i sin ( π / n ) = 2 [ [ 1 cos ( π / n ) ] + i sin ( π / n ) ] [ 1 cos ( π / n ) ] 2 + sin 2 ( π / n ) ; \Large \frac{2}{[1-\cos(\pi/n)] - i \sin(\pi/n)} \cdot \frac{[1-\cos(\pi/n)] + i \sin(\pi/n)}{[1-\cos(\pi/n)] + i \sin(\pi/n)} = \frac{2[[1-\cos(\pi/n)] + i \sin(\pi/n)]}{[1-\cos(\pi/n)]^2 + \sin^{2}(\pi/n)};

or 2 [ [ 1 cos ( π / n ) ] + i sin ( π / n ) ] 1 2 cos ( π / n ) + cos 2 ( π / n ) + sin 2 ( π / n ) \Large \frac{2[[1-\cos(\pi/n)] + i \sin(\pi/n)]}{1-2\cos(\pi/n) + \cos^{2}(\pi/n) + \sin^{2}(\pi/n)} ;

or [ 1 cos ( π / n ) ] + i sin ( π / n ) 1 cos ( π / n ) ; \Large \frac{[1-\cos(\pi/n)] + i \sin(\pi/n)}{1-\cos(\pi/n) };

or 1 + i sin ( π / n ) 1 cos ( π / n ) ; \large 1 + i \frac{\sin(\pi/n)}{1-\cos(\pi/n)};

or 1 + i cot ( π 2 n ) . \large 1 + i \cot(\frac{\pi}{2n}).

Hence, k = 2 . \boxed{k=2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...