Just another Inequality Problem

Algebra Level 5

If x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 , find the value of E E given that x 1 x 2 + y 1 y 2 + z 1 z 2 E \dfrac{x}{1-x^2}+\dfrac{y}{1-y^2}+\dfrac{z}{1-z^2}\geq E .

Details: x , y , z x,y,z range over positive reals.

Round your answer to the nearest tenth.


The answer is 2.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Dec 8, 2014

Let x 1 x 2 + y 1 y 2 + z 1 z 2 = M \dfrac{x}{1-x^2}+\dfrac{y}{1-y^2}+\dfrac{z}{1-z^2} = M


By RMS inequality ,

( x + y ) 2 2 x 2 + y 2 = 1 z 2 \dfrac{(x + y)^{2}}{2} \leq x^{2} + y^{2} = 1 - z^{2}


therefore

z 1 z 2 2 z ( x + y ) 2 \dfrac{z}{1 - z^{2}} \geq \dfrac{2z}{(x + y)^{2}}

Thus ( for other 2 terms also)

M 2 x ( z + y ) 2 + 2 y ( x + z ) 2 + 2 z ( x + y ) 2 M \geq \dfrac{2x}{(z + y)^{2}} + \dfrac{2y}{(x + z)^{2}} + \dfrac{2z}{(x + y)^{2}} . . . 1. ... 1.


By Cauchy - Schwartz inequality,

( x + y + z ) ( z ( x + y ) 2 + y ( x + z ) 2 + x ( z + y ) 2 ) ( z ( x + y ) + y ( x + z ) + x ( z + y ) ) 2 (x + y + z)( \dfrac{z}{(x + y)^{2}} + \dfrac{y}{(x + z)^{2}} + \dfrac{x}{(z + y)^{2}}) \geq ( \dfrac{z}{(x + y)} + \dfrac{y}{(x + z)} + \dfrac{x}{(z + y)})^{2} . . . . . . 2. ...... 2.


x ( z + y ) + y ( x + z ) + z ( x + y ) 3 2 \dfrac{x}{(z + y)} + \dfrac{y}{(x + z)} + \dfrac{z}{(x + y)} \geq \frac{3}{2} . . . 3 ...3 (can be easily proved as its symmetric in a,b,c)


By RMS inequality,

( x + y + z 3 ) 2 x 2 + y 2 + z 2 3 = 1 3 (\dfrac{x + y + z}{3})^{2} \leq \dfrac{x^{2} + y^{2} + z^{2}}{3} = \frac{1}{3} . . . 4 ... 4


For 1 by 2,3

M ( E ) 2 x + y + z ( z ( x + y ) + y ( x + z ) + x ( z + y ) ) 2 M(E) \geq \dfrac{2}{x + y + z}( \dfrac{z}{(x + y)} + \dfrac{y}{(x + z)} + \dfrac{x}{(z + y)})^{2}

E 2 3 ( 3 2 ) 2 = 3 3 2 E \geq \frac{2}{\sqrt{3}}(\frac{3}{2})^{2} = \frac{3\sqrt{3}}{2}


Nice solution Megh !
One Can also use Jenson's inequality

Deepanshu Gupta - 6 years, 6 months ago

1 z 2 ( x + y ) 2 2 1-{z}^{2} \geq \frac{{(x+y)}^{2}}{2}

then to get the minimum of z 1 z 2 \frac{z}{1-{z}^{2}} , we need to find maximum of 1 z 2 1-{z}^{2} and you found its minimum.

Kartik Sharma - 6 years, 6 months ago

You showed 1 z 2 ( x + y ) 2 2 1-{z}^{2} \geq \frac{{(x+y)}^{2}}{2} , but from here you can't write z 1 z 2 2 z ( x + y ) 2 \frac{z}{1-{z}^{2}} \geq \frac{2z}{(x + y)^{2}} , since when we reciprocate an inequality, its sign also changes. Now can you explain, how you did it then??

Raushan Sharma - 5 years, 4 months ago

Log in to reply

I agree with you

Racchit Jain - 5 years, 3 months ago

Nice problem @Krishna Ar { ❤ } { ❤ }{ ❤ }

U Z - 6 years, 6 months ago

Log in to reply

:) Thanks a lot !

Krishna Ar - 6 years, 6 months ago
Deepanshu Gupta
Dec 8, 2014

Let : y = f ( x ) = x 1 x i n ( 0 , 1 ) y\quad =\quad f\left( x \right) \quad =\quad \frac { \sqrt { x } }{ 1-x } \quad in\quad (0,1) .

Let us consider Three Points on the curve which forms an convex polygon (Here it is Triangle) Since Graph is concave up , And Centroid G of triangle must lie inside the triangle . Now drop Perpendicular from G point which meets the given curve at P point So x-coordinate of both are same !

y G y p f ( x i 2 ) n f ( x i 2 n ) f ( x i 2 ) n f ( 1 n ) ( p u t n = 3 ) f ( x i 2 ) 3 3 2 A n s . { y }_{ G }\quad \ge \quad { y }_{ p }\\ \\ \frac { \sum { f\left( { { x }_{ i } }^{ 2 } \right) } }{ n } \quad \ge \quad f\left( \cfrac { \sum { { { x }_{ i } }^{ 2 } } }{ n } \right) \\ \\ \sum { f\left( { { x }_{ i } }^{ 2 } \right) } \quad \ge \quad nf\left( \cfrac { 1 }{ n } \right) \quad \quad \quad (put\quad n\quad =\quad 3)\\ \\ \boxed { \sum { f\left( { { x }_{ i } }^{ 2 } \right) } \quad \ge \quad 3\cfrac { \sqrt { 3 } }{ 2 } } \quad Ans. .

In which chapter did you learnt this inequality?

U Z - 6 years, 6 months ago

Log in to reply

Actually it is not used in Specific chapter ! But I learned this technique From Amit agarwal's Book "Playing with graph's" In a question Like this:

T P T : sin A 3 3 2 TPT\quad :\quad \sum { \sin { A } } \le \quad \cfrac { 3\sqrt { 3 } }{ 2 } \quad .

More ever You can See This Jensen's Inequality

Deepanshu Gupta - 6 years, 6 months ago
Abhishek Sinha
Dec 6, 2014

Note that without loss of optimality, we can restrict the variables to the set 0 x , y , z 1 0\leq x,y,z \leq 1 . Straightforward calculus gives that each of the function x 1 x 2 , y 1 y 2 \frac{x}{1-x^2}, \frac{y}{1-y^2} and z 1 z 2 \frac{z}{1-z^2} is convex in that restricted set. Hence their sum is convex and also the constraint set x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 is convex. Thus using KKT conditions of convex optimization theory, we note that the minimum value of the objective is attained at x = y = z = 1 3 x^*=y^*=z^*=\frac{1}{\sqrt{3}} . Hence E = 3 3 2 E=\frac{3\sqrt{3}}{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...