∫ − ∞ ∞ ( x 2 + 1 ) 4 1 d x
The integral above can be expressed as 2 c 5 a π b , where a , b and c are integers. What is a + b + c ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Chew-Seong Cheong This is Just the method which I had told Vincent Moroney in his solution about......!!
Before to evaluate let's reduce the integral in the form of I n ∫ ( a 2 + x 2 ) n + 1 1 d x ∀ n ∈ N ≥ 0 . Here we will integrate it by parts so let us make u substitution as u = ( a 2 + x 2 ) n 1 and d v = d u which follows as d u = − ( a 2 + x 2 ) n + 1 2 n x d x and v = x . Hence, I n ∴ I n + 1 = ( a 2 + x 2 ) n x + 2 n ∫ ( a 2 + x 2 ) n + 1 x 2 d x = ( a 2 + x 2 ) x + 2 n ∫ ( a 2 + x 2 ) n + 1 a 2 + x 2 − a 2 = ( a 2 + x 2 ) x + 2 n I n − 2 n a 2 I n + 1 = 2 n a 2 1 ⋅ ( a 2 + x 2 ) n x + 2 n a 2 2 n − 1 ⋅ I n Set n = 3 and a = 1 we obtain I 4 = 6 1 ⋅ ( 1 + x 2 ) 4 x + 6 5 ⋅ I 3 It is known that ∫ a 2 + x 2 1 I 2 = I 1 + 1 = a 1 tan − 1 a x + C ⇒ ∫ 1 + x 2 1 = tan − 1 x + C = 2 ( 1 + x 2 ) x + 2 1 tan − 1 x + C Therefore, I 4 = 6 1 ⋅ ( 1 + x 2 ) 4 x + 6 5 ⋅ ( 4 x ( 1 + x 2 ) 2 1 + 8 ( 1 + x 2 ) 3 x + 8 3 tan − 1 x + C ) Set the upper and lower limit we obtain I 4 = ∫ − ∞ ∞ ( 1 + x 2 ) 4 1 d x = 6 5 ⋅ 8 3 ⋅ 2 2 π = 2 4 5 1 ⋅ π 1 Finally, a + b + c = 6 .
I I ∴ 2 I I = 2 ∫ 0 ∞ ( x 2 + 1 ) 4 1 d x = 2 ∫ ∞ 0 ( u 2 1 + 1 ) 4 1 u 2 − d u = 2 ∫ 0 ∞ u 2 u 8 ( 1 + u 2 ) 4 1 d u = 2 ∫ 0 ∞ ( u 2 + 1 ) 4 u 6 d u = 2 ∫ 0 ∞ ( x 2 + 1 ) 4 x 6 d x = 2 ∫ 0 ∞ ( x 2 + 1 ) 4 x 6 + 1 d x = ∫ 0 ∞ ( x 2 + 1 ) 4 ( x 2 + 1 ) ( x 4 − x 2 + 1 ) d x = ∫ 0 ∞ ( x 2 + 1 ) 3 ( x 2 + 1 ) 2 − 3 x 2 d x = ∫ 0 ∞ x 2 + 1 1 − ( x 2 + 1 ) 3 3 x 2 d x = ∫ 0 2 π ( tan 2 θ + 1 1 − ( tan 2 θ + 1 ) 3 3 tan 2 θ ) sec 2 θ d θ = ∫ 0 2 π ( sec 2 θ 1 − ( sec 2 θ ) 3 3 tan 2 θ ) sec 2 θ d θ = ∫ 0 2 π 1 − 3 sin 2 θ cos 2 θ d θ = ∫ 0 2 π 1 − 4 3 ( 2 sin θ cos θ ) 2 d θ = ∫ 0 2 π 1 − 4 3 sin 2 2 θ d θ = ∫ 0 2 π 1 − 8 3 ( 1 − cos 2 θ ) d θ = ∫ 0 2 π 8 5 + 8 3 cos 2 θ d θ = [ 8 5 + 1 6 3 sin 2 θ ] 0 2 π = 1 6 5 π letting x = u 1 by adding I = 2 ∫ 0 ∞ ( x 2 + 1 ) 4 1 d x letting x = tan θ using sin 2 θ = 2 sin θ cos θ using sin 2 θ = 2 1 ( 1 − cos 2 θ )
Let's consider the complex valued function ( z 2 + 1 ) 4 1 . This has poles at z = ± i . Let Γ be the contour containing z = i and the entire real axis. Therefore we have ∮ Γ ( z 2 + 1 ) 4 1 d z = ∮ Γ ( z − i ) 4 ( z + i ) 4 1 d z . The Cauchy integral formula for derivatives states f ( λ ) ( z ) = 2 π i λ ! ∮ Γ ( t − z ) λ + 1 f ( t ) d t Some simple rearranging gives λ ! 2 π i f λ ( z ) = ∮ Γ ( t − z ) λ + 1 f ( t ) d t . Note that in our case, z = i , λ = 3 and f ( 3 ) ( i ) = 2 7 i 7 − 1 2 0 = 1 6 i 1 5 . Therefore ∫ − ∞ ∞ ( x 2 + 1 ) 4 1 d x = ∮ Γ ( z − i ) 4 ( z + i ) 4 1 d z = λ ! 2 π i f λ ( z ) = 1 6 5 π . Therefore a + b + c = 6 .
@Vincent Moroney OR, we can substitute x as tan(theta) and then use Beta Function........!!!!
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Beta Function
I = ∫ − ∞ ∞ ( x 2 + 1 ) 4 1 d x = 2 ∫ 0 ∞ ( x 2 + 1 ) 4 1 d x = ∫ 0 ∞ ( 1 + u ) 4 u − 2 1 d u = B ( 2 1 , 2 7 ) = Γ ( 4 ) Γ ( 2 1 ) Γ ( 2 7 ) = 3 ! π ( 2 5 × 2 3 × 2 1 π ) = 1 6 5 π Since the integrand is even Let u = x 2 ⟹ d u = 2 x d x Beta function B ( m , n ) = ∫ 0 ∞ ( 1 + u ) m + n u m − 1 d u and B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n ) , where Γ ( ⋅ ) is gamma function.
Therefore, a + b + c = 1 + 1 + 4 = 6 .