Just Another Regular Trig Problem

Algebra Level 3

Find the value of k k in the equation below. sin x + sin 2 x cos x + cos 2 x = tan k x \frac { \sin { x } +\sin { 2x } }{ \cos { x } +\cos { 2x } } =\tan { kx }


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 30, 2018

Q = sin x + sin 2 x cos x + cos 2 x Let t = tan x 2 sin x = 2 t 1 + t 2 = 2 t 1 + t 2 + 2 2 t 1 + t 2 1 t 2 1 + t 2 1 t 2 1 + t 2 + 1 2 ( 2 t 1 + t 2 ) 2 cos x = 1 t 2 1 + t 2 = 3 t t 3 1 3 t 2 = 3 tan x 2 tan 3 x 2 1 3 tan 2 x 2 = tan 3 2 x \begin{aligned} Q & = \frac {\sin x + \sin 2x}{\cos x + \cos 2x} & \small \color{#3D99F6} \text{Let }t = \tan \frac x2 \implies \sin x = \frac {2t}{1+t^2} \\ & = \frac {\frac {2t}{1+t^2}+2\cdot \frac {2t}{1+t^2}\cdot \frac {1-t^2}{1+t^2}}{\frac {1-t^2}{1+t^2}+1-2\left(\frac {2t}{1+t^2} \right)^2} & \small \color{#3D99F6} \implies \cos x = \frac {1-t^2}{1+t^2} \\ & = \frac {3t-t^3}{1-3t^2} \\ & = \frac {3\tan \frac x2 - \tan^3 \frac x2}{1-3 \tan^2 \frac x2} \\ & = \tan \frac 32 x \end{aligned}

Therefore, k = 3 2 = 1.5 k = \dfrac 32 = \boxed {1.5} .

Julian Yu
Aug 30, 2018

Use the sum to product formulas.

sin x + sin 2 x cos x + cos 2 x = 2 sin 3 x 2 cos x 2 2 cos 3 x 2 cos x 2 = tan 3 x 2 k = 1.5 \dfrac{\sin{x}+\sin{2x}}{\cos{x}+\cos{2x}}=\dfrac{2\sin{\frac{3x}{2}}\cos{\frac{-x}{2}}}{2\cos{\frac{3x}{2}}\cos{\frac{-x}{2}}}=\tan{\frac{3x}{2}}\implies k=1.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...