This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let X is the average of the numbers.
X = 9 0 2 sin 2 ∘ + 4 sin 4 ∘ + 6 sin 6 ∘ + … + 1 7 4 sin 1 7 4 ∘ + 1 7 6 sin 1 7 6 ∘ + 1 7 8 sin 1 7 8 ∘ + 1 8 0 sin 1 8 0 ∘
Using the identity, sin ( 1 8 0 − α ) = sin α , we get that
sin 2 ∘ = sin 1 7 8 ∘ , sin 4 ∘ = sin 1 7 6 ∘ , sin 4 ∘ = sin 1 7 4 ∘ , and soon, so we can simplfy the numerator become:
X = 9 0 1 8 0 ( sin 2 ∘ + sin 4 ∘ + sin 6 ∘ + … + sin 8 4 ∘ + sin 8 6 ∘ + sin 8 8 ∘ ) + 9 0 sin 9 0 ∘ + 1 8 0 sin 1 8 0 ∘ = cos 8 8 ∘ 2 cos 8 8 ∘ ( sin 2 ∘ + sin 4 ∘ + sin 6 ∘ + … + sin 8 4 ∘ + sin 8 6 ∘ + sin 8 8 ∘ ) + 1
Now, multiply all of items on bracket by cos 8 8 ∘ and use 2 cos α sin β = sin ( α + β ) − sin ( α − β )
2 cos 8 8 ∘ sin 2 ∘ = sin 9 0 ∘ − sin 8 6 ∘ = sin 9 0 ∘ − sin 9 4 ∘
2 cos 8 8 ∘ sin 4 ∘ = sin 9 2 ∘ − sin 8 4 ∘ = sin 9 2 ∘ − sin 9 6 ∘
2 cos 8 8 ∘ sin 6 ∘ = sin 9 4 ∘ − sin 8 2 ∘ = sin 9 4 ∘ − sin 9 8 ∘
2 cos 8 8 ∘ sin 8 ∘ = sin 9 6 ∘ − sin 8 0 ∘ = sin 9 6 ∘ − sin 1 0 0 ∘
⋮
2 cos 8 8 ∘ sin 8 0 ∘ = sin 1 6 8 ∘ − sin 8 ∘ = sin 1 6 8 ∘ − sin 1 7 2 ∘
2 cos 8 8 ∘ sin 8 2 ∘ = sin 1 7 0 ∘ − sin 6 ∘ = sin 1 7 0 ∘ − sin 1 7 4 ∘
2 cos 8 8 ∘ sin 8 4 ∘ = sin 1 7 2 ∘ − sin 4 ∘ = sin 1 7 2 ∘ − sin 1 7 6 ∘
2 cos 8 8 ∘ sin 8 6 ∘ = sin 1 7 4 ∘ − sin 2 ∘ = sin 1 7 4 ∘ − sin 2 ∘
2 cos 8 8 ∘ sin 8 8 ∘ = sin 1 7 6 ∘ − sin 0 ∘ = sin 1 7 6 ∘ − sin 0 ∘
All items that have the same color will cancel each other and the black items are remaining. Therefore, we can re-write the last equation of X as
X = cos 8 8 ∘ sin 9 0 ∘ + sin 9 2 ∘ − sin 2 ∘ + 1 = cos 8 8 ∘ 2 sin 9 1 ∘ cos 1 ∘ − cos 8 8 ∘ + 1 = 2 sin 1 ∘ cos 1 ∘ 2 sin 9 1 ∘ cos 1 ∘ = 2 sin 1 ∘ cos 1 ∘ 2 cos 1 ∘ cos 1 ∘ = cot 1 ∘