Just another sequence!

Geometry Level 3

The average of the numbers n sin ( n ) n \sin (n^{\circ}) for n = 2 , 4 , 6 , , 180 n=2,4,6,\ldots , 180 is?

1 tan 1 \tan 1^{\circ} cot 1 \cot 1^{\circ} 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mas Mus
Sep 11, 2015

Let X \overline{X} is the average of the numbers.

X = 2 sin 2 + 4 sin 4 + 6 sin 6 + + 174 sin 17 4 + 176 sin 17 6 + 178 sin 17 8 + 180 sin 18 0 90 \overline{X}=\large{\frac{2\sin2^{\circ}+4\sin4^{\circ}+6\sin6^{\circ}+~\dots~+174\sin174^{\circ}+176\sin176^{\circ}+178\sin178^{\circ}+180\sin180^{\circ}}{90}}

Using the identity, sin ( 180 α ) = sin α ~\sin(180-\alpha)=\sin\alpha , we get that

sin 2 = sin 17 8 , sin 4 = sin 17 6 , sin 4 = sin 17 4 , \sin2^{\circ}=\sin178^{\circ},~~\sin4^{\circ}=\sin176^{\circ},~~\sin4^{\circ}=\sin174^{\circ}, and soon, so we can simplfy the numerator become:

X = 180 ( sin 2 + sin 4 + sin 6 + + sin 8 4 + sin 8 6 + sin 8 8 ) + 90 sin 9 0 + 180 sin 18 0 90 = 2 cos 8 8 ( sin 2 + sin 4 + sin 6 + + sin 8 4 + sin 8 6 + sin 8 8 ) cos 8 8 + 1 \begin{aligned}\overline{X}&=\frac{180\left(\sin2^{\circ}+\sin4^{\circ}+\sin6^{\circ}+~\dots~+\sin84^{\circ}+\sin86^{\circ}+\sin88^{\circ}\right)+90\sin90^{\circ}+180\sin180^{\circ}}{90}\\&=\frac{2\cos88^{\circ}\left(\sin2^{\circ}+\sin4^{\circ}+\sin6^{\circ}+~\dots~+\sin84^{\circ}+\sin86^{\circ}+\sin88^{\circ}\right)}{\cos88^{\circ}}+1\end{aligned}

Now, multiply all of items on bracket by cos 8 8 \cos88^{\circ} and use 2 cos α sin β = sin ( α + β ) sin ( α β ) ~2\cos\alpha~\sin\beta=\sin(\alpha+\beta)-\sin(\alpha-\beta)

2 cos 8 8 sin 2 = sin 9 0 sin 8 6 = sin 9 0 sin 9 4 2\cos88^{\circ}~\sin2^{\circ}=\sin90^{\circ}-\sin86^{\circ}=\sin90^{\circ}-\color{#D61F06}{\sin94^{\circ}}

2 cos 8 8 sin 4 = sin 9 2 sin 8 4 = sin 9 2 sin 9 6 2\cos88^{\circ}~\sin4^{\circ}=\sin92^{\circ}-\sin84^{\circ}=\sin92^{\circ}-\color{#3D99F6}{\sin96^{\circ}}

2 cos 8 8 sin 6 = sin 9 4 sin 8 2 = sin 9 4 sin 9 8 2\cos88^{\circ}~\sin6^{\circ}=\sin94^{\circ}-\sin82^{\circ}=\color{#D61F06}{\sin94^{\circ}}-\color{#20A900}{\sin98^{\circ}}

2 cos 8 8 sin 8 = sin 9 6 sin 8 0 = sin 9 6 sin 10 0 2\cos88^{\circ}~\sin8^{\circ}=\sin96^{\circ}-\sin80^{\circ}=\color{#3D99F6}{\sin96^{\circ}}-\color{#BA33D6}{\sin100^{\circ}}

~~\vdots

2 cos 8 8 sin 8 0 = sin 16 8 sin 8 = sin 16 8 sin 17 2 2\cos88^{\circ}~\sin80^{\circ}=\sin168^{\circ}-\sin8^{\circ}=\color{grey}{\sin168^{\circ}}-\color{#69047E}{\sin172^{\circ}}

2 cos 8 8 sin 8 2 = sin 17 0 sin 6 = sin 17 0 sin 17 4 2\cos88^{\circ}~\sin82^{\circ}=\sin170^{\circ}-\sin6^{\circ}=\color{silver}{\sin170^{\circ}}-\color{#EC7300}{\sin174^{\circ}}

2 cos 8 8 sin 8 4 = sin 17 2 sin 4 = sin 17 2 sin 17 6 2\cos88^{\circ}~\sin84^{\circ}=\sin172^{\circ}-\sin4^{\circ}=\color{#69047E}{\sin172^{\circ}}-\color{#E81990}{\sin176^{\circ}}

2 cos 8 8 sin 8 6 = sin 17 4 sin 2 = sin 17 4 sin 2 2\cos88^{\circ}~\sin86^{\circ}=\sin174^{\circ}-\sin2^{\circ}=\color{#EC7300}{\sin174^{\circ}}-\sin2^{\circ}

2 cos 8 8 sin 8 8 = sin 17 6 sin 0 = sin 17 6 sin 0 2\cos88^{\circ}~\sin88^{\circ}=\sin176^{\circ}-\sin0^{\circ}=\color{#E81990}{\sin176^{\circ}}-\sin0^{\circ}

All items that have the same color will cancel each other and the black items are remaining. Therefore, we can re-write the last equation of X \overline{X} as

X = sin 9 0 + sin 9 2 sin 2 cos 8 8 + 1 = 2 sin 9 1 cos 1 cos 8 8 cos 8 8 + 1 = 2 sin 9 1 cos 1 2 sin 1 cos 1 = 2 cos 1 cos 1 2 sin 1 cos 1 = cot 1 \begin{aligned}\overline{X}&=\frac{\sin90^{\circ}+\sin92^{\circ}-\sin2^{\circ}}{\cos88^{\circ}}+1=\frac{2\sin91^{\circ}\cos1^{\circ}-\cos88^{\circ}}{\cos88^{\circ}}+1\\\\&=\frac{2\sin91^{\circ}\cos1^{\circ}}{2\sin1^{\circ} \cos1^{\circ}}=\frac{2\cos1^{\circ}\cos1^{\circ}}{2\sin1^{\circ} \cos1^{\circ}}=\cot1^{\circ}\end{aligned}

Although this is not a proper way of solving it, it is a multiple choice question so we can use the process of elimination. sin(180-x) = sin(x), so for 0<x<180, sinx>0 and sin180=0. So all of the numbers are non-negative. 2+4+6+8+...+180 = 2(0.5)(90+91)= 8190. There are 90 terms so the average of the coefficients is 90. The middle positive value of sin x is 0.5, but more than half of the values for x will have a sine greater than 0.5 (30<x<150). So the average will be greater than 90(0.5), which is 45. Thus, the average of the numbers will be above 45. Check each option: 0 is under 45, 1 is under 45, tan 1 is less than 1, but cot 1 is greater that 45. (Correct to 2 decimal places, cot1= 57.29). So the average of the numbers is cot1.

Moderator note:

This solution has been marked wrong as it's basically an antisolution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...