Just. Another Summation

Algebra Level 4

n = 4 20 ( n 4 ) ! ( n ) ! \sum_{n=4}^{20} \frac{(n-4)!}{(n)!}

If the result of the summation above can be written in form a b \frac{a}{b} for a a and b b are positive, coprime integers, find a + b a + b


The answer is 21659.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The summation itself is

n = 4 20 ( n 4 ) ! n ! \sum_{n=4}^{20} \frac{(n-4)!}{n!}

= n = 4 20 ( n 4 ) ! n × ( n 1 ) × ( n 2 ) × ( n 3 ) × ( n 4 ) ! = \sum_{n=4}^{20} \frac{(n-4)!}{n \times (n-1) \times (n-2) \times (n-3) \times (n-4)!}

= n = 4 20 1 n × ( n 1 ) × ( n 2 ) × ( n 3 ) = \sum_{n=4}^{20} \frac{1}{n \times (n-1) \times (n-2) \times (n-3)}

Notice that

1 ( n 1 ) × ( n 2 ) × ( n 3 ) 1 n × ( n 1 ) × ( n 2 ) \frac{1}{(n-1) \times (n-2) \times (n-3)} - \frac{1}{n \times (n-1) \times (n-2)}

= ( n ) ( n 3 ) n × ( n 1 ) × ( n 2 ) × ( n 3 ) = \frac{(n) - (n-3)}{n \times (n-1) \times (n-2) \times (n-3)}

= 3 n × ( n 1 ) × ( n 2 ) × ( n 3 ) = \frac{3}{n \times (n-1) \times (n-2) \times (n-3)}

So

1 n × ( n 1 ) × ( n 2 ) × ( n 3 ) = 1 3 × ( 1 ( n 1 ) × ( n 2 ) × ( n 3 ) 1 n × ( n 1 ) × ( n 2 ) ) \frac{1}{n \times (n-1) \times (n-2) \times (n-3)} = \frac{1}{3} \times (\frac{1}{(n-1) \times (n-2) \times (n-3)} - \frac{1}{n \times (n-1) \times (n-2)})

Then substitute that to the summation

n = 4 20 1 n × ( n 1 ) × ( n 2 ) × ( n 3 ) = n = 4 20 1 3 × ( 1 ( n 1 ) × ( n 2 ) × ( n 3 ) 1 n × ( n 1 ) × ( n 2 ) ) \sum_{n=4}^{20} \frac{1}{n \times (n-1) \times (n-2) \times (n-3)} = \sum_{n=4}^{20} \frac{1}{3} \times (\frac{1}{(n-1) \times (n-2) \times (n-3)} - \frac{1}{n \times (n-1) \times (n-2)})

= 1 3 × ( n = 4 20 1 ( n 1 ) × ( n 2 ) × ( n 3 ) 1 n × ( n 1 ) × ( n 2 ) ) = \frac{1}{3} \times (\sum_{n=4}^{20} \frac{1}{(n-1) \times (n-2) \times (n-3)} - \frac{1}{n \times (n-1) \times (n-2)})

= 1 3 × ( ( 1 3 × 2 × 1 1 4 × 3 × 2 ) + ( 1 4 × 3 × 2 1 5 × 4 × 3 ) + . . . + ( 1 19 × 18 × 17 1 20 × 19 × 18 ) = \frac{1}{3} \times ((\frac{1}{3 \times 2 \times 1} - \frac{1}{4 \times 3 \times 2}) + (\frac{1}{4 \times 3 \times 2} - \frac{1}{5 \times 4 \times 3}) + ... + (\frac{1}{19 \times 18 \times 17} - \frac{1}{20 \times 19 \times 18})

Use the telescopics, then it will remain

1 3 × ( 1 3 × 2 × 1 1 20 × 19 × 18 ) \frac{1}{3} \times (\frac{1}{3 \times 2 \times 1} - \frac{1}{20 \times 19 \times 18})

= 1 3 × ( 1 6 1 6840 ) = \frac{1}{3} \times (\frac{1}{6} - \frac{1}{6840})

= 1 3 × 1140 1 6840 = \frac{1}{3} \times \frac{1140-1}{6840}

= 1 3 × 1139 6840 = \frac{1}{3} \times \frac{1139}{6840}

= 1139 20520 = \frac{1139}{20520}

1139 and 20520 are coprime, so a = 1139 a = 1139 and b = 20520 b=20520 , then a + b = 21659 a + b = \boxed{21659}

*cmiiw

Chew-Seong Cheong
Sep 12, 2015

n = 4 20 ( n 4 ) ! n ! = n = 4 20 1 n ( n 1 ) ( n 2 ( n 3 ) = n = 4 20 1 n ( n 3 ) ( n 1 ) ( n 2 ) = n = 4 20 1 ( n 2 3 n ) ( n 2 3 n + 2 ) Note: 1 n 2 3 n 1 n 2 3 n + 2 = 2 ( n 2 3 n ) ( n 2 3 n + 2 ) = 1 2 n = 4 20 ( 1 n ( n 3 ) 1 ( n 1 ) ( n 2 ) ) = 1 2 n = 4 20 [ 1 3 ( 1 n 3 1 n ) ( 1 n 2 1 n 1 ) ] = 1 2 [ 1 3 ( n = 1 17 1 n n = 4 20 1 n ) ( n = 2 18 1 n n = 3 19 1 n ) ] = 1 2 [ 1 3 ( 1 1 + 1 2 + 1 3 1 18 1 19 1 20 ) ( 1 2 1 19 ) ] = 1 2 [ 1 3 ( 3420 + 1710 + 1140 190 180 171 3420 ) ( 19 2 38 ) ] = 1 2 [ 1 3 ( 5729 3420 ) 17 38 ] = 5729 20520 17 288 = 1139 20520 \begin{aligned} \sum_{n=4}^{20} \frac{(n-4)!}{n!} & = \sum_{n=4}^{20} \frac{1}{\color{#3D99F6}{n}\color{#D61F06}{(n-1)(n-2} \color{#3D99F6}{(n-3)}} \\ & = \sum_{n=4}^{20} \frac{1}{\color{#3D99F6}{n(n-3)}\color{#D61F06}{(n-1)(n-2)}} \\ & = \sum_{n=4}^{20} \frac{1}{\color{#3D99F6}{(n^2-3n)}\color{#D61F06}{(n^2-3n+2)}} \quad \small \color{#3D99F6}{\text{Note: }} \frac{1}{\color{#3D99F6}{n^2-3n}} - \frac{1}{\color{#D61F06}{n^2-3n+2}} = \frac{2}{\color{#3D99F6}{(n^2-3n)}\color{#D61F06}{(n^2-3n+2)}} \\ & = \frac{1}{2} \sum_{n=4}^{20} \left(\color{#3D99F6}{\frac{1}{n(n-3)}} - \color{#D61F06}{\frac{1}{(n-1)(n-2)}} \right) \\ & = \frac{1}{2} \sum_{n=4}^{20} \left[\color{#3D99F6}{\frac{1}{3} \left(\frac{1}{n-3} - \frac{1}{n}\right)} - \color{#D61F06}{\left(\frac{1}{n-2}-\frac{1}{n-1} \right)} \right] \\ & = \frac{1}{2} \left[ \color{#3D99F6}{\frac{1}{3} \left( \sum_{n=1}^{17} \frac{1}{n} - \sum_{n=4}^{20} \frac{1}{n}\right)} - \color{#D61F06}{\left(\sum_{n=2}^{18} \frac{1}{n}- \sum_{n=3}^{19} \frac{1}{n} \right)} \right] \\ & = \frac{1}{2} \left[ \color{#3D99F6}{\frac{1}{3} \left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}-\frac{1}{18}-\frac{1}{19} - \frac{1}{20} \right)} - \color{#D61F06}{\left(\frac{1}{2}-\frac{1}{19}\right)} \right] \\ & = \frac{1}{2} \left[ \color{#3D99F6}{\frac{1}{3} \left(\frac {3420+ 1710 +1140-190-180-171}{3420} \right)} - \color{#D61F06}{\left(\frac{19-2}{38} \right)} \right] \\ & = \frac{1}{2} \left[ \color{#3D99F6}{\frac{1}{3} \left(\frac {5729}{3420} \right)} - \color{#D61F06}{\frac{17}{38}} \right] \\ & = \color{#3D99F6}{\frac {5729}{20520}} - \color{#D61F06}{\frac{17}{288}} \\ & = \frac{1139}{20520} \end{aligned}

a + b = 1139 + 20520 = 21659 \Rightarrow a + b = 1139 + 20520 = \boxed{21659}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...