Just Check your limits

Calculus Level 3

lim x a ( 2 a x ) tan π x 2 a = e n \large \lim_{x \to a} \bigg( 2 - \frac{a}{x} \bigg)^{\tan \frac{\pi x}{2a}} = e^{n}

Find approximate value of n n .


The answer is -0.636.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Taking the natural log of both sides of the given equation, we then have the equation

n = lim x a tan ( π x 2 a ) ln ( 2 a x ) = lim x a ln ( 2 a x ) cot ( π x 2 a ) n = \displaystyle\lim_{x \to a} \tan(\frac{\pi x}{2a}) \ln(2 - \frac{a}{x}) = \lim_{x \to a} \dfrac{\ln(2 - \frac{a}{x})}{\cot(\frac{\pi x}{2a})} .

This limit is of the indeterminate form 0 0 \frac{0}{0} , so applying L'Hopital's rule we have that

n = lim x a a x 2 2 a x π 2 csc 2 ( π x 2 a ) = 2 π lim x a a 2 x a csc 2 ( π x 2 a ) = 2 π a a csc 2 ( π 2 ) = 2 π = 0.6366 n = \displaystyle\lim_{x \to a} \dfrac{\dfrac{\frac{a}{x^{2}}}{2 - \frac{a}{x}}}{-\frac{\pi}{2}\csc^{2}(\frac{\pi x}{2a})} = -\dfrac{2}{\pi} * \lim_{x \to a} \dfrac{\dfrac{a}{2x - a}}{\csc^{2}(\frac{\pi x}{2a})} = -\dfrac{2}{\pi} * \dfrac{\frac{a}{a}}{\csc^{2}(\frac{\pi}{2})} = -\dfrac{2}{\pi} = \boxed{-0.6366}

to 4 decimal places.

Nicely done!

Sandeep Bhardwaj - 5 years, 3 months ago

That's how i did it! Nicely done!

Hobart Pao - 5 years, 3 months ago

Exactly same method..!

Just took a x = p \frac{a}{x}=p and changed the limit as p \rightarrow 1 for simplifying calculations..

Rohit Sachdeva - 5 years ago

Damn... So idiot

David de Freitas - 1 year, 9 months ago
Aakash Khandelwal
Feb 29, 2016

Just apply standard method of solving limits of sort 1^infinity. Lim(x-->a){1+f(x)}^1/g(x)= e^[lim(x-->a){f(x)/g(x)}]

Ayoub Tirdad
Apr 18, 2020

My solution is quite long but I think it works.

We already know that e x = lim n ( 1 + x n ) n e^x=\displaystyle\lim_{n \to \infty} (1+\frac{x}{n})^{n} . So we would like to transform this.

Let y = tan ( π 2 x a ) y=\tan(\frac{\pi}{2} \frac{x}{a}) and so a x = π 2 1 arctan ( y ) \frac{a}{x}=\frac{\pi}{2}\cdot \frac{1}{\arctan(y)}

When x x approaches a a , y y approaches \infty

Then we need to compute lim y ( 1 + α y ) y \displaystyle\lim_{y \to \infty} (1+\frac{\alpha}{y})^{y}

where α = y π 2 y arctan ( y ) \alpha = y-\frac{\pi}{2}\cdot \frac{y}{\arctan(y)}

So because e x = lim n ( 1 + x n ) n e^x=\displaystyle\lim_{n \to \infty} (1+\frac{x}{n})^{n} , this means that the answer n n equals :

lim y y π 2 y arctan ( y ) lim y 1 arctan ( y ) ( y arctan ( y ) π 2 y ) \displaystyle\lim_{y \to \infty} y-\frac{\pi}{2}\cdot \frac{y}{\arctan(y)} \iff \displaystyle\lim_{y \to \infty} \frac{1}{\arctan(y)}(y\arctan(y)-\frac{\pi}{2}\cdot y)

lim y 1 arctan ( y ) ( y ( arctan ( y ) π 2 ) ) \iff \displaystyle\lim_{y \to \infty} \frac{1}{\arctan(y)}(y \cdot (\arctan(y)-\frac{\pi}{2}))

However lim y y ( arctan ( y ) π 2 ) lim y arctan ( y ) π 2 1 y \displaystyle\lim_{y \to \infty} y \cdot (\arctan(y)-\frac{\pi}{2}) \iff \displaystyle\lim_{y \to \infty} \frac{\arctan(y)-\frac{\pi}{2}}{\frac{1}{y}} .

This limit is of the indeterminate form 0 0 \frac{0}{0} , so by L'Hopital's rule

lim y arctan ( y ) π 2 1 y = lim y y 2 y 2 + 1 = 1 \displaystyle\lim_{y \to \infty} \frac{\arctan(y)-\frac{\pi}{2}}{\frac{1}{y}}=\displaystyle\lim_{y \to \infty} -\frac{y^2}{y^2+1}=-1 .

Thus, we get that n = lim y 1 arctan ( y ) ( 1 ) = 2 π n=\displaystyle\lim_{y \to \infty} \frac{1}{\arctan(y)}(-1)=-\frac{2}{\pi} as lim x arctan ( x ) = π 2 \displaystyle\lim_{x \to \infty} \arctan(x)=\frac{\pi}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...