Just Count 2

Let a triangle is formed whose vertices are the vertices of a cube .Find the s u m sum of number of e q u i l a t e r a l equilateral , r i g h t right a n g l e d angled and s c a l e n e scalene t r i a n g l e s triangles formed.

First part here


The answer is 80.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

T h e r e a r e t h r e e t y p e s o f l i n e s . 12 e d g e s , 12 d i a g o n a l s o n s i x f a c e s , 4 g r e a t d i a g o n a l s . 12 e d g e s c o m b i n e w i t h 12 + 4 = 16 o t h e r l i n e s f o r m 192 t r i a n g l e s . 12 d i a g o n a l s c o m b i n e w i t h 4 g r e a t d i a g o n a l s f o r m 48 t r i a n g l e s . T o t a l 240 t r i a n g l e s . B u t a t r i a n g l e i s f o r m e d o u t o f 3 l i n e s . e a c h l i n e i s c o u n t e d t h r i c e . S o n u m b e r o f t r i a n g l e s a r e 1 3 240 = 80. There~ are~ three~ types~ of~ lines.\\ 12~~edges,~~~~~~~~12~~diagonals on six faces,~~~~~~~~~4~~great~diagonals.\\ 12~~edges~combine~with~12+4=16~other~lines~form~192~triangles.\\ 12~~diagonals~combine~with~4~great~diagonals~form~48~triangles.\\ Total~240~triangles. \\ But ~a~triangle~is~formed~out~of~3~lines.~~ \implies~~each~line~is~counted~thrice.\\ So~number~ of~ triangles~are~\dfrac 1 3*240=\Large \color{#D61F06}{80}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...