Just do it in 5 seconds!

9797 ÷ 97 = 101 9898 ÷ 98 = 101 9999 ÷ 99 = 101 100100 ÷ 100 = x \large \begin{aligned} \color{#3D99F6} 9797 \color{#333333} ÷ \color{#D61F06} 97 \color{#333333} & = \color{#20A900} 101 \\ \large \color{#3D99F6} 9898 \color{#333333} ÷ \color{#D61F06} 98 \color{#333333} & = \color{#20A900} 101 \\ \large \color{#3D99F6} 9999 \color{#333333} ÷ \color{#D61F06} 99 \color{#333333} & = \color{#20A900} 101 \\ \\ \color{#3D99F6} 100100 \color{#333333} ÷ \color{#D61F06} 100 \color{#333333} & = \color{#69047E} \boxed{x} \end{aligned}

What is the value of x \color{#69047E} x ?


BONUS : Explain why this happens.

100 99 10001 1001 101

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Aug 18, 2018

9797 ÷ 97 = 9797 97 = 97 × 101 97 = 101 9898 ÷ 98 = 9898 98 = 98 × 101 98 = 101 9999 ÷ 99 = 9999 99 = 99 × 101 99 = 101 100100 ÷ 100 = 100100 100 = 100 × 1001 100 = 1001 \begin{aligned} 9797 \div 97 = \frac {9797}{97} = \frac {97\times\color{#3D99F6}101}{97} & = \color{#3D99F6} 101 \\ 9898 \div 98 = \frac {9898}{98} = \frac {98\times\color{#3D99F6}101}{98} & =\color{#3D99F6} 101 \\ 9999 \div 99 = \frac {9999}{99} = \frac {99\times \color{#3D99F6}101}{99} & =\color{#3D99F6} 101 \\ \\ 100100 \div 100 = \frac {100100}{100} = \frac {100\times\color{#D61F06} 1001}{100} & = \color{#D61F06} \boxed{1001}\end{aligned}

@Syed Hamza Khalid , you can type {\color{blue} 97} \times {\color{red} 101} ( 97 × 101 {\color{#3D99F6} 97} \times {\color{#D61F06} 101} ) so you don't need to type \color{black}. The first { } is to be before \color and after where you want to color.

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

Thanks! This is very useful

Syed Hamza Khalid - 2 years, 9 months ago
Ram Mohith
Aug 16, 2018

Let a a be any n n digit number. Then, a a \overline{aa} contains 2 n 2n digits. Let us divide a a \overline{aa} by a a .

If n = 1 n = 1 a a a = 10 a + a a = 10 a a + a a = 10 + 1 = 11 \dfrac{\overline{aa}}{a} = \dfrac{10a + a}{a} = \dfrac{10a}{a} + \dfrac{a}{a} = 10 + 1 = \boxed{11} If n = 2 n = 2 a a a = 100 a + a a = 100 a a + a a = 100 + 1 = 101 \dfrac{\overline{aa}}{a} = \dfrac{100a + a}{a} = \dfrac{100a}{a} + \dfrac{a}{a} = 100 + 1 = \boxed{101} If n = 3 n = 3 a a a = 1000 a + a a = 1000 a a + a a = 1000 + 1 = 1001 \dfrac{\overline{aa}}{a} = \dfrac{1000a + a}{a} = \dfrac{1000a}{a} + \dfrac{a}{a} = 1000 + 1 = \boxed{1001} \large \vdots

If n = n n = n a a a = 10 n ( a ) + a a = 10 n a a + a a = 10 n + 1 \dfrac{\overline{aa}}{a} = \dfrac{10n(a) + a}{a} = \dfrac{10na}{a} + \dfrac{a}{a} = \boxed{\color{#20A900}10n + 1} Note : If you are confused with any of these steps see my comment in the comments section where I had explained this more clearly.


So, the value of 100100 100 = 10 ( 3 ) + 1 = 1001 \dfrac{\color{#3D99F6}100100}{\color{#D61F06}100} = 10(3) + 1 = \color{#69047E}1001

a a \overline{aa} means a number in which both the unit digit and ten's digit are same and that is equal to a a . a b \overline{ab} means a number in which the unit digit is b b and the ten's digit is a a . And this continues.

Ex : If a = 2 a = 2 then a a = 22 \overline{aa} = 22 . If a = 5 , b = 3 a = 5, b = 3 then a b = 53 \overline{ab} = 53 . If x = 1 , y = 2 , z = 3 x = 1, y = 2, z = 3 then x y z = 123 \overline{xyz} = 123 .

  • a b = 10 a + b ( if a,b are 1 digit numbers ) \overline{ab} = 10a + b \quad (\text{if a,b are 1 digit numbers})

  • a a = 10 a + a ( if a is 1 digit number ) \overline{aa} = 10a + a \quad (\text{if a is 1 digit number})

  • a a = 100 a + 10 ( 0 ) + a ( if a is 2 digit number ) \overline{aa} = 100a + 10(0) + a \quad (\text{if a is 2 digit number})

  • a a = 1000 a + 100 ( 0 ) + 10 ( 0 ) + a ( if a is 3 digit number ) \overline{aa} = 1000a + 100(0) + 10(0) + a \quad (\text{if a is 3 digit number})

\large \vdots

  • a a = 10 n ( a ) + 10 ( n 1 ) ( 0 ) + 10 ( n 2 ) ( 0 ) + . . . + 100 ( 0 ) + 10 ( 0 ) + a = 10 n ( a ) + 1 ( if a is n digit number ) \overline{aa} = 10n(a) + 10(n - 1)(0) + 10(n - 2)(0) + ... + 100(0) + 10(0) + a = \boxed{10n(a) + 1} \quad (\text{if a is n digit number})

Ram Mohith - 2 years, 9 months ago
X X
Aug 16, 2018

9797 = 9700 + 97 = 97 × 100 + 97 = 97 ( 100 + 1 ) = 97 × 101 9797=9700+97=97\times100+97=97(100+1)=97\times101 , and this is same for 98 98 and 99 99

But, 100100 = 100000 + 100 = 100 × 1000 + 100 = 100 ( 1000 + 1 ) = 100 × 1001 100100=100000+100=100\times1000+100=100(1000+1)=100\times1001


I almost chose 101 101 at the first second :p

Lol; glad that you stopped before making the terrible mistake... :)

Syed Hamza Khalid - 2 years, 9 months ago
Munem Shahriar
Aug 26, 2018

100100 ÷ 100 = 100100 100 = 1001 0 0 1 0 0 = 1001 100100 \div 100 = \frac{100100}{100} = \frac{1001\cancel{0}\cancel{0}}{1\cancel{0}\cancel{0}} = 1001

Daniel Sikora
Aug 20, 2018

The rule is so smooth, but if u can look at the numbers you should realise, that there are always four-digit numbers, but in the question to solve there is the six-digit one. On the first thought, you would probably like to think this is fine - two numbers in your big number are getting bigger, so the whole number should be bigger though. However, the right '1' isn't able to change the whole number - it can only happen if every number on the left from it was '9' because it's written in the decimal system. I hope you can feel what I mean :D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...