Just don't get bored

Calculus Level 4

f ( x ) = f 1 ( x ) f 2 ( x ) \large f(x) = f^{1}(x)f^2(x)

Given the above and that f ( a ) = 0 f(a) = 0 and f n ( a ) ( f l ( a ) ) 2 = 28 f^{n}(a)(f^{l}(a))^2 = 28 . Find n + l + 1 n+l+1 .

Notation: f k ( x ) f^{k}(x) denotes k th k^\text{th} derivative of f ( x ) f(x) .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akash Shukla
Jul 19, 2016

f 2 ( x ) = f ( x ) f 1 ( x ) . . . . . . . ( 1 ) f^2(x)=\dfrac{f(x)}{f^1(x)}.......(1)

f 3 ( x ) = f 1 ( x ) f 1 ( x ) f ( x ) f 2 ( x ) ( f 1 ( x ) ) 2 = 1 ( f ( x ) ) 2 ( f 1 ( x ) ) 3 . . . . . . . f r o m ( 1 ) \therefore f^3(x) = \dfrac{f^1(x)}{f^1(x)} - \dfrac{f(x)*f^2(x)}{(f^1(x))^2} =1 - \dfrac{(f(x))^2}{(f^1(x))^3}.......\space from(1)

f 4 ( x ) = 2 f ( x ) ( f 1 ( x ) ) 2 + 3 ( f ( x ) ) 3 ( f 1 ( x ) ) 5 \therefore f^4(x) = \dfrac{-2f(x)}{(f^1(x))^2}+\dfrac{3(f(x))^3}{(f^1(x))^5}

f 5 ( x ) = 2 f 1 ( x ) + 4 ( f ( x ) ) 2 ( f 1 ( x ) ) 4 + 9 ( f ( x ) ) 2 ( f 1 ( x ) ) 4 15 ( f ( x ) ) 4 ( f 1 ( x ) ) 7 \therefore f^5(x) = \dfrac{-2}{f^1(x)}+\dfrac{4*(f(x))^2}{(f^1(x))^4}+\dfrac{9*(f(x))^2}{(f^1(x))^4}-\dfrac{15(f(x))^4}{(f^1(x))^7}

In this way if you will go then you will get,

f 7 ( x ) = 2 ( f 1 ( x ) ) 2 + 18 ( f 1 ( x ) ) 2 + 8 ( f 1 ( x ) ) 2 + k f ( x ) f^7(x) = \dfrac{2}{(f^1(x))^2}+\dfrac{18}{(f^1(x))^2}+\dfrac{8}{(f^1(x))^2}+k*f(x)

So, f ( a ) = 0 f(a)=0

f 7 ( a ) = 2 ( f 1 ( a ) ) 2 + 18 ( f 1 ( a ) ) 2 + 8 ( f 1 ( a ) ) 2 + k f ( a ) f^7(a) = \dfrac{2}{(f^1(a))^2}+\dfrac{18}{(f^1(a))^2}+\dfrac{8}{(f^1(a))^2}+k*f(a)

f 7 ( a ) = 2 ( f 1 ( a ) ) 2 + 18 ( f 1 ( a ) ) 2 + 8 ( f 1 ( a ) ) 2 + 0 f^7(a) = \dfrac{2}{(f^1(a))^2}+\dfrac{18}{(f^1(a))^2}+\dfrac{8}{(f^1(a))^2}+0

f 7 ( a ) ( f 1 ( a ) ) 2 = 28 f^7(a)*(f^1(a))^2 =\boxed{28}

Here the noticeable thing is that, f k ( a ) = 0 f^k(a) = 0 if k is an even integer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...