Angles In a Pentagon

Geometry Level 2

sec ( π 10 ) sec ( 3 π 10 ) sec ( 7 π 10 ) sec ( 9 π 10 ) = ? \large \sec \left ( \dfrac {\pi}{10} \right ) \sec \left ( \dfrac {3\pi}{10} \right ) \sec \left ( \dfrac {7\pi}{10} \right ) \sec \left ( \dfrac {9\pi}{10} \right ) = \; ?


The answer is 3.2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 27, 2016

X = sec π 10 sec 3 π 10 sec 7 π 10 sec 9 π 10 1 X = cos π 10 cos 3 π 10 cos 7 π 10 cos 9 π 10 Note that cos ( π x ) = cos x = cos π 10 cos 3 π 10 ( cos 3 π 10 ) ( cos π 10 ) = cos 2 π 10 cos 2 3 π 10 = 1 4 ( 1 + cos π 5 ) ( 1 + cos 3 π 5 ) = 1 4 ( 1 + cos π 5 + cos 3 π 5 + cos π 5 cos 3 π 5 ) As cos A cos B = 1 2 ( cos ( A B ) + cos ( A + B ) ) = 1 4 ( 1 + cos π 5 + cos 3 π 5 + 1 2 ( cos 2 π 5 + cos 6 π 5 ) ) Note that cos ( π x ) = cos x = 1 4 ( 1 + cos π 5 + cos 3 π 5 1 2 ( cos 3 π 5 + cos π 5 ) ) = 1 4 ( 1 + 1 2 ( cos π 5 + cos 3 π 5 ) ) See note: k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 = 1 4 ( 1 + 1 2 ( 1 2 ) ) = 5 16 X = 16 5 = 3.2 \begin{aligned} X & = \sec \frac \pi{10} \sec \frac {3\pi}{10} \sec \frac {7\pi}{10} \sec \frac {9\pi}{10} \\ \implies \frac 1X & = \cos \frac \pi{10} \cos \frac {3\pi}{10} \color{#3D99F6} \cos \frac {7\pi}{10} \cos \frac {9\pi}{10} & \small \color{#3D99F6} \text{Note that} \cos (\pi - x) = - \cos x \\ & = \cos \frac \pi{10} \cos \frac {3\pi}{10} \color{#3D99F6} \left( - \cos \frac {3\pi}{10}\right)\left(- \cos \frac \pi{10}\right) \\ & = \cos^2 \frac \pi{10} \cos^2 \frac {3\pi}{10} \\ & = \frac 14 \left(1+ \cos \frac \pi 5 \right) \left(1 + \cos \frac {3\pi}5\right) \\ & = \frac 14 \left(1+ \cos \frac \pi 5 + \cos \frac {3\pi}5 + {\color{#3D99F6}\cos \frac \pi 5 \cos \frac {3\pi} 5} \right) & \small \color{#3D99F6} \text{As } \cos A \cos B = \frac 12 (\cos (A-B) + \cos (A+B)) \\ & = \frac 14 \left(1+ \cos \frac \pi 5 + \cos \frac {3\pi}5 + {\color{#3D99F6} \frac 12 \left( \cos \frac {2\pi}5 + \cos \frac {6\pi} 5 \right)} \right) & \small \color{#3D99F6} \text{Note that} \cos (\pi - x) = - \cos x \\ & = \frac 14 \left(1+ \cos \frac \pi 5 + \cos \frac {3\pi}5 - \frac 12 \left({\color{#3D99F6} \cos \frac {3\pi}5 + \cos \frac \pi 5} \right) \right) \\ & = \frac 14 \left(1+ \frac 12 \left({\color{#3D99F6}\cos \frac \pi 5 + \cos \frac {3\pi} 5}\right) \right) & \small \color{#3D99F6} \text{See note: } \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12 \\ & = \frac 14 \left(1+ \frac 12 \left({\color{#3D99F6}\frac 12}\right) \right) \\ & = \frac 5{16} \\ \implies X & = \frac {16}5 = \boxed{3.2} \end{aligned}


Note:

S = k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = { k = 0 n 1 e 2 k + 1 2 n + 1 π i } = { e π i 2 n + 1 k = 0 n 1 e 2 k π i 2 n + 1 } = { e π i 2 n + 1 ( 1 e 2 n π i 2 n + 1 1 e 2 π i 2 n + 1 ) } = { e π i 2 n + 1 e π i 1 e 2 π i 2 n + 1 } = { e π i 2 n + 1 + 1 ( 1 + e π i 2 n + 1 ) ( 1 e π i 2 n + 1 ) } = { 1 1 e π i 2 n + 1 } = { 1 1 cos π i 2 n + 1 i sin π i 2 n + 1 } = { 1 cos π i 2 n + 1 + i sin π i 2 n + 1 ( 1 cos π i 2 n + 1 ) 2 + sin 2 π i 2 n + 1 } = { 1 cos π i 2 n + 1 + i sin π i 2 n + 1 2 2 cos π i 2 n + 1 } = 1 2 \begin{aligned} S & = \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) \\ & = \Re \left \{ \sum_{k=0}^{n-1} e^{\frac {2k+1}{2n+1}\pi i} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \sum_{k=0}^{n-1} e^{\frac {2k\pi i}{2n+1}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \left(\frac {1-e^{\frac {2n\pi i}{2n+1}}}{1-e^{\frac {2\pi i}{2n+1}}}\right) \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}}-e^{\pi i}}{1-e^{\frac {2\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}} + 1}{\left(1+e^{\frac {\pi i}{2n+1}} \right) \left(1-e^{\frac {\pi i}{2n+1}} \right)} \right \} \\ & = \Re \left \{ \frac 1{1-e^{\frac {\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac 1{1-\cos \frac {\pi i}{2n+1} - i\sin \frac {\pi i}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi i}{2n+1} + i\sin \frac {\pi i}{2n+1}}{\left(1-\cos \frac {\pi i}{2n+1}\right)^2 + \sin^2 \frac {\pi i}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi i}{2n+1} + i\sin \frac {\pi i}{2n+1}}{2-2\cos \frac {\pi i}{2n+1}} \right \} \\ & = \frac 12 \end{aligned}

Great solution! +1

My solution (which I loved), used De Moivre's Theorem, but this works just as perfectly.

Sharky Kesa - 4 years, 5 months ago

Log in to reply

I would certainly love to see the application of De Moivre's Theorem, would you mind to post a solution. Thanks.

Sometimes it is useful to remember formulaes (for such questions) sin ( π 10 ) = 5 1 4 sin ( π 5 ) = 10 2 5 4 cos ( π 10 ) = 10 + 2 5 4 cos ( π 5 ) = 5 + 1 4 \sin\left(\dfrac{\pi}{10}\right) = \dfrac{\sqrt{5} - 1}{4}\\ \\ \sin\left(\dfrac{\pi}{5}\right) = \dfrac{10 - 2\sqrt{5}}{4}\\ \\ \cos\left(\dfrac{\pi}{10}\right) = \dfrac{10 + 2\sqrt{5}}{4}\\ \\ \cos\left(\dfrac{\pi}{5}\right) = \dfrac{\sqrt{5} + 1}{4}

Ashish Menon - 4 years, 5 months ago
Sharky Kesa
Dec 28, 2016

My solution using De Moivre's Theorem:

We will use the expansion of cos 5 θ \cos 5\theta to solve this problem.

cis 5 θ = ( cis θ ) 5 cos 5 θ + i sin 5 θ = ( cos θ + i sin θ ) 5 = ( cos 5 θ 10 cos 3 θ sin 2 θ + 5 cos θ sin 4 θ ) + ( cos 4 θ sin θ cos 2 θ sin 3 θ ) i \begin{aligned} \text{cis} 5 \theta &= (\text{cis} \theta)^5\\ \cos 5\theta + i \sin 5\theta &= (\cos \theta + i \sin \theta)^5\\ &= (\cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta) + (\cos^4 \theta \sin \theta - \cos^2 \theta \sin^3 \theta) i\\ \end{aligned}

Equating real parts and converting sin \sin to cos \cos gets us

cos 5 θ = cos 5 θ 10 cos 3 θ ( 1 cos 2 θ ) + 5 cos θ ( 1 c o s 2 θ ) 2 = 16 cos 5 θ 20 cos 3 θ + 5 cos θ \begin{aligned} \cos 5\theta &= \cos^5 \theta - 10 \cos^3 \theta (1 - \cos^2 \theta) + 5 \cos \theta (1-cos^2 \theta)^2 \\ &= 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta \\ \end{aligned}

Notice that π 10 , 3 π 10 , 5 π 10 , 7 π 10 , 9 π 10 \frac {\pi}{10}, \frac {3\pi}{10}, \frac {5\pi}{10}, \frac {7\pi}{10}, \frac {9\pi}{10} are the 5 roots to cos 5 θ = 0 \cos 5 \theta = 0 . (This is fairly simple to show and is left as an exercise to the reader). However, cos 5 π 10 = 0 \cos \frac {5\pi}{10} = 0 , so we can divide out this root and get polynomial

16 cos 4 θ 20 cos 2 θ + 5 = 0 16 \cos^4 \theta - 20 \cos^2 \theta + 5 = 0

By Vieta's, the product of the other roots is 5 16 \frac {5}{16} , so cos π 10 cos 3 π 10 cos 7 π 10 cos 9 π 10 = 5 16 \cos \frac {\pi}{10} \cos \frac {3\pi}{10} \cos \frac {7\pi}{10} \cos \frac {9\pi}{10} = \frac {5}{16} . From this, we get

sec π 10 sec 3 π 10 sec 7 π 10 sec 9 π 10 = 16 5 = 3.2 \sec \dfrac {\pi}{10} \sec \dfrac {3\pi}{10} \sec \dfrac {7\pi}{10} \sec \dfrac {9\pi}{10} = \dfrac {16}{5} = 3.2

Is there any solution by drawing a pentagon?

Harry Jones - 4 years, 5 months ago

Log in to reply

I'd have to think about it and play around with this, but it is possible (there probably is, but it would require some obscure constructions).

Sharky Kesa - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...