Just elegancy required 2

Algebra Level 4

{ x y + x + y = 23 x z + x + z = 41 y z + y + z = 27 \begin{cases} xy+x+y=23 \\ xz+x+z=41 \\ yz+y+z=27 \end{cases}

Let the two solution set of x , y , z x,y,z be ( x 1 , y 1 , z 1 ) (x_1,y_1,z_1) and ( x 2 , y 2 , z 2 ) (x_2,y_2,z_2) , find x 1 y 1 z 1 + x 2 y 2 z 2 x_1 y_1 z_1 + x_2 y_2 z_2 .


The answer is -190.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The given equations can be rewritten as

( x + 1 ) ( y + 1 ) = 24 , ( x + 1 ) ( z + 1 ) = 42 (x + 1)(y + 1) = 24, (x + 1)(z + 1) = 42 and ( y + 1 ) ( z + 1 ) = 28 (y + 1)(z + 1) = 28 .

Then ( x + 1 ) ( y + 1 ) 1 ( x + 1 ) ( z + 1 ) ( y + 1 ) ( z + 1 ) = 24 1 42 28 (x + 1)(y + 1) * \dfrac{1}{(x + 1)(z + 1)} * (y + 1)(z + 1) = 24*\dfrac{1}{42}*28

( y + 1 ) 2 = 16 y + 1 = ± 4. \Longrightarrow (y + 1)^{2} = 16 \Longrightarrow y + 1 = \pm 4.

Solving the initial two equations in turn gives us that x + 1 = ± 6 x + 1 = \pm 6 and z + 1 = ± 7. z + 1 = \pm 7.

Thus ( x 1 , y 1 , z 1 ) = ( 5 , 3 , 6 ) (x_{1}, y_{1}, z_{1}) = (5,3,6) and ( x 2 , y 2 , z 2 ) = ( 7 , 5 , 8 ) (x_{2},y_{2},z_{2}) = (-7, -5, -8) , and so

x 1 × y 1 × z 1 + x 2 × y 2 × z 2 = 90 + ( 280 ) = 190 . x_{1} \times y_{1} \times z_{1} + x_{2} \times y_{2} \times z_{2} = 90 + (-280) = \boxed{-190}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...