Just for fun!-IV

Algebra Level 3

x + 1 + x 1 x + 1 x 1 = 4 x 1 2 , x = ? \large \dfrac { \sqrt { x+1 } +\sqrt { x-1 } }{ \sqrt { x+1 } -\sqrt { x-1 } } =\dfrac { 4x-1 }{ 2 } \quad, \quad x= \ ?


The answer is 1.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
Aug 18, 2015

x + 1 + x 1 x + 1 x 1 = 4 x 1 2 ( x + 1 + x 1 ) ( x + 1 + x 1 ) ( x + 1 x 1 ) ( x + 1 + x 1 ) = 4 x 1 2 ( x + 1 ) 2 + 2 ( x + 1 ) ( x 1 ) + ( x 1 ) 2 ( x + 1 ) 2 ( x 1 ) 2 = 4 x 1 2 x + 1 + 2 ( x + 1 ) ( x 1 ) + x 1 x + 1 ( x 1 ) = 4 x 1 2 2 x + 2 x 2 1 2 = 4 x 1 2 2 x + 2 x 2 1 = 4 x 1 2 x 2 1 = 2 x 1 4 ( x 2 1 ) = 4 x 2 4 x + 1 4 x 2 4 = 4 x 2 4 x + 1 4 x = 5 x = 5 4 = 1.25 \begin{aligned}\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=&\ \dfrac{4x-1}2\\\dfrac{(\sqrt{x+1}+\sqrt{x-1})(\sqrt{x+1}+\sqrt{x-1})}{(\sqrt{x+1}-\sqrt{x-1})(\sqrt{x+1}+\sqrt{x-1})}=&\ \dfrac{4x-1}2\\\dfrac{(\sqrt{x+1})^2+2(\sqrt{x+1})(\sqrt{x-1})+(\sqrt{x-1})^2}{(\sqrt{x+1})^2-(\sqrt{x-1})^2}=&\ \dfrac{4x-1}2\\\dfrac{x+1+2\sqrt{(x+1)(x-1)}+x-1}{x+1-(x-1)}=&\ \dfrac{4x-1}2\\\dfrac{2x+2\sqrt{x^2-1}}2=&\ \dfrac{4x-1}2\\2x+2\sqrt{x^2-1}=&\ 4x-1\\2\sqrt{x^2-1}=&\ 2x-1\\4(x^2-1)=&\ 4x^2-4x+1\\4x^2-4=&\ 4x^2-4x+1\\4x=&\ 5\\x=&\ \dfrac54=\boxed{1.25}\end{aligned}

This is easier

Shivam Sabharwal - 5 years, 9 months ago

Log in to reply

Depends on how one thinks :)

Swapnil Das - 5 years, 9 months ago

Nice solution. Could be easily done by componendo dividendo.

Swapnil Das - 5 years, 10 months ago
Navu Katz
Aug 22, 2015

Componendo-Dividendo: if a b = c d \frac{a}{b} = \frac{c}{d} then a + b a b = c + d c d \frac{a+b}{a-b} = \frac{c+d}{c-d}

Using this result,

x + 1 + x 1 x + 1 x 1 = 4 x 1 2 \frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}} = \frac{4x-1}{2}

x + 1 x 1 = 4 x 1 + 2 4 x 1 2 \frac{\sqrt{x+1}}{\sqrt{x-1}} = \frac{4x-1+2}{4x-1-2}

Squaring both sides,

x + 1 x 1 = ( 4 x + 1 ) 2 ( 4 x 3 ) 2 \frac{x+1}{x-1} = \frac{(4x+1)^{2}}{(4x-3)^{2}}

x + 1 x 1 = 16 x 2 + 8 x + 1 16 x 2 24 x + 9 \frac{x+1}{x-1} = \frac{16x^{2}+8x+1}{16x^{2}-24x+9}

Using componendo-dividendo again,

x = 32 x 2 16 x + 10 32 x 8 x = \frac{32x^{2}-16x+10}{32x-8}

32 x 2 8 x = 32 x 2 16 x + 10 32x^{2}-8x = 32x^{2}-16x+10

8 x = 10 8x = 10

x = 1.25 x = 1.25

Very nice.

Swapnil Das - 5 years, 9 months ago

Can you tell us how Using Compendendo Divindendo makes 16x^2 + 8x + 1 to 32x^2 - 24x +9 and similarly the denominator

Syed Baqir - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...