Just Integrate

Calculus Level 4

Let f ( x ) = sec ( x ) d x 2 cos ( 2 x ) 1 f(x) = \displaystyle\int \dfrac{\sec(x) \, dx}{2\cos(2x)-1}

Given that f ( 0 ) = 1 f(0) = 1 , find the value of f ( π 12 ) f\left( \dfrac{ \pi }{12} \right) .

Give your answer to 3 decimal places.


The answer is 1.293.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 14, 2015

f ( x ) = sec x 2 cos ( 2 x ) 1 d x sec x = 1 cos x cos ( 2 x ) = 2 cos 2 x 1 = 1 cos x ( 2 [ 2 cos 2 x 1 ] 1 ) d x = 1 4 cos 3 x 3 cos x d x cos ( 3 x ) = 4 cos 3 x 3 cos x = 1 cos ( 3 x ) d x Let t = tan ( 3 x 2 ) cos ( 3 x ) = 1 t 2 1 + t 2 d t = 3 2 ( 1 + t 2 ) d x = 2 3 1 1 t 2 d t = 2 3 1 ( 1 t ) ( 1 + t ) d t = 1 3 ( 1 1 t d t + 1 1 + t d t ) = 1 3 ( ln ( 1 t ) + ln ( 1 + t ) ) + c c is a constant = 1 3 ( ln [ 1 + t 1 t ] ) + c = 1 3 ( ln [ ( 1 + t ) ( 1 + t ) ( 1 t ) ( 1 + t ) ] ) + c = 1 3 ( ln [ 1 + 2 t + t 2 1 t 2 ] ) + c = 1 3 ( ln [ 2 t 1 t 2 + 1 + t 2 1 t 2 ] ) + c = 1 3 ( ln [ tan ( 3 x ) + sec ( 3 x ) ] ) + c \begin{aligned} f(x) & = \int \frac{\color{#3D99F6}{\sec x}}{2 \color{#D61F06}{\cos(2x)}-1}dx \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\sec x = \frac{1}{\cos x}} \quad \color{#D61F06}{\cos (2x) = 2\cos^2 x -1 } \\ & = \int \frac{1}{\color{#3D99F6}{\cos x} (2[\color{#D61F06}{2\cos^2 x - 1}]-1)}dx \\ & = \int \frac{1}{\color{#3D99F6}{4\cos^3x-3\cos x}}dx \quad \quad \quad \quad \small \color{#3D99F6}{\cos (3x) = 4\cos^3x-3\cos x} \\ & = \int \frac{1}{\color{#3D99F6}{\cos (3x)}} dx \quad \quad \quad \quad \quad \quad \quad \quad \space \small \color{#3D99F6}{\text{Let } t = \tan \left(\frac{3x}{2} \right) \quad \Rightarrow \cos(3x) = \frac{1-t^2}{1+t^2} \quad \Rightarrow dt = \frac{3}{2}(1+t^2)dx} \\ & = \frac{2}{3} \int \frac{1}{1-t^2} dt \\ & =\frac{2}{3} \int \frac{1}{(1-t)(1+t)} dt \\ & = \frac{1}{3}\left(\int \frac{1}{1-t} dt + \int \frac{1}{1+t} dt \right) \\ & = \frac{1}{3}\left( - \ln (1-t) + \ln (1+t) \right) + c \quad \small \color{#3D99F6}{c \text{ is a constant}} \\ & = \frac{1}{3}\left( \ln \left[ \frac{1+t}{1-t} \right] \right) + c \\ & = \frac{1}{3}\left( \ln \left[ \frac{(1+t)(1+t)}{(1-t)(1+t)} \right] \right) + c \\ & = \frac{1}{3}\left( \ln \left[ \frac{1 + 2t + t^2}{1-t^2} \right] \right) + c \\ & = \frac{1}{3}\left( \ln \left[ \frac{2t}{1-t^2} + \frac{1+t^2}{1-t^2} \right] \right) + c \\ \\ & = \frac{1}{3}\left( \ln \left[ \tan (3x) + \sec (3x) \right] \right) + c \end{aligned}

It is given that f ( 0 ) = 1 f(0) = 1 , then:

f ( 0 ) = 1 3 ( ln [ tan 0 + sec 0 ] ) + c = 1 3 ln 1 + c & = 0 + c c = 1 \begin{aligned} f(0) & = \frac{1}{3}\left( \ln \left[ \tan 0 + \sec 0 \right] \right) + c \\ & = \frac{1}{3} \ln 1 + c \& = 0 + c \\ \Rightarrow c & = 1 \end{aligned}

And we have:

f ( π 12 ) = 1 3 ( ln [ tan ( π 4 ) + sec ( π 4 ) ] ) + 1 = 1 3 ln ( 1 + 2 ) + 1 = 1.294 \begin{aligned} f\left( \frac{\pi}{12} \right) & = \frac{1}{3}\left( \ln \left[ \tan \left( \frac{\pi}{4} \right) + \sec \left( \frac{\pi}{4} \right) \right] \right) + 1 \\ & = \frac{1}{3} \ln (1 + \sqrt{2}) + 1 \\ & = \boxed{1.294} \end{aligned}

1 3 sec 3 x d ( 3 x ) \displaystyle \frac13 \int \sec 3 x~d (3 x) = 1 3 ln ( sec 3 x + tan 3 x ) \frac13 \ln (\sec 3x + \tan 3x) + C = 1 3 ln tan ( π 4 + 3 x 2 ) \frac13 \ln \tan (\frac{\pi}{4} + \frac{3x}{2}) + C

f (x) = 1 3 ln tan ( π 4 + 3 x 2 ) \frac13 \ln \tan (\frac{\pi}{4} + \frac{3x}{2}) + 1

Straight but referred to table.

Lu Chee Ket - 5 years, 6 months ago

Log in to reply

Yes, I realized it later. But then since I have solved it through a simpler way must well just show it.

Chew-Seong Cheong - 5 years, 6 months ago

Log in to reply

All right. I just summarized it in a sentence.

Lu Chee Ket - 5 years, 6 months ago

Nice Solution sir! Key thing to note in the problem was that trignometric expression burns down to s e c ( 3 x ) sec(3x) .

Harsh Shrivastava - 5 years, 6 months ago

Log in to reply

Yes, I failed to see that. The solution wouldn't be that long.

Chew-Seong Cheong - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...