An algebra problem by A Former Brilliant Member

Algebra Level 3

S = S = x 1 x 2 + x 2 1 x 4 + x 4 1 x 8 . . . . . . . . . = \dfrac {x}{1 - x^{2}} + \dfrac {x^{2}}{1 - x^{4}} + \dfrac {x^{4}}{1 - x^{8}} .........=

1 1 1 + x 1 x \dfrac {1 + x}{1 - x} 1 1 x \dfrac {1}{1 - x} x 1 x \dfrac {x}{1 - x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

General term, t n = x 2 n 1 1 x 2 n t_n = \dfrac {x^{2^{n - 1}}}{1 - x^{2^{n}}} = 1 + x 2 n 1 1 ( 1 + x 2 n 1 ) ( 1 x 2 n 1 ) = \dfrac {1 + x^{2^{n - 1}} - 1}{(1 + x^{2^{n - 1}})(1 - x^{2^{n - 1}})} = 1 1 x 2 n 1 1 1 x 2 n = \dfrac {1}{1 - x^{2^{n - 1}}} - \dfrac {1}{1 - x^{2^{n}}}

Now, S n = n = 1 n t n S_n = \displaystyle \sum_{n = 1}^n t_n = [ 1 1 x 1 1 x 2 ] + [ 1 1 x 2 1 1 x 4 ] + . . . . . . + [ 1 1 x 2 n 1 1 1 x 2 n ] = [\dfrac {1}{1 - x} - \dfrac {1}{1 - x^{2}}] + [\dfrac {1}{1 - x^{2}} - \dfrac {1}{1 - x^{4}}] + ......+[\dfrac {1}{1 - x^{2^{n - 1}}} - \dfrac {1}{1 - x^{2^{n}}}]

= 1 1 x 1 1 x 2 n = \dfrac {1}{1 - x} - \dfrac {1}{1 - x^{2{n}}}

To Infinite terms, lim n S = 1 1 x 1 \displaystyle \lim_{n \rightarrow \infty} S= \dfrac {1}{1 - x} - 1 = x 1 x = \dfrac {x}{1 - x} . Since, ( lim n x 2 n = 0 , x < 1 ) (\lim_{n \rightarrow \infty} x^{2^{n}} = 0, |x|<1)

A N S W E R : x 1 x ANSWER:\boxed{\dfrac {x}{1 - x}}

Parth Sankhe
Nov 13, 2018

Every single term is the sum of an infinite G.P, and expanding each term to the infinite G.P form will eventually give you x x to the power of every natural number, thus becoming x + x 2 + x 3 + x 4 + x 5 . . . . . = x 1 x x+x^2+x^3+x^4+x^5.....=\frac {x}{1-x}

( a + a r + a r 2 + a r 3 . . . . = a 1 r a+ar+ar^2+ar^3....∞=\frac {a}{1-r} , given r<1,>0)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...