Just keep logging!

Algebra Level 3

The solution to log 2 + 3 ( x 2 + 1 + x ) + log 2 3 ( x 2 + 1 x ) = 3 \log_{2 + \sqrt3}(\sqrt{x^2 + 1} + x) + \log_{2 - \sqrt3}(\sqrt{x^2 + 1} - x) = 3 can be expressed as a b \dfrac{\sqrt{a}}{b} , where a a and b b are positive integers. Find the smallest a + b + 27 a + b + 27 .

91. 54. 81. 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I will tell what I did, tell me if I am wrong,

( x 2 + 1 + x ) = ( 2 + 3 ) 3 2 (\sqrt{x^2+1} + x) = (2 +\sqrt 3)^{\frac 32} and ( x 2 + 1 x ) = ( 2 3 ) 3 2 (\sqrt{x^2+1} -x) = (2 - \sqrt 3)^{\frac 32}

Squaring on both sides,

2 x 2 + 1 + 2 x x 2 + 1 = 26 + 15 3 x 2 = 25 2 {\color{#20A900}{2x^2 + 1}} +2x\sqrt{x^2+1} = {\color{#20A900}{26}} + 15\sqrt 3 \Rightarrow x^2 = \dfrac {25}{2}

x = 5 2 = 50 2 = a b \Rightarrow x= \dfrac {5}{\sqrt 2} = \dfrac {\sqrt {50}}{2} = \dfrac {\sqrt a}{b}

Therefore, a + b + 27 = 50 + 2 + 27 = 79 a + b +27 = 50 + 2 + 27 = \boxed {79}

Chew-Seong Cheong
Nov 23, 2018

Consider the following:

2 ± 3 = 4 ± 2 3 2 = ( 3 ± 1 2 ) 2 2 ± 3 = 3 ± 1 2 ( 2 ± 3 ) 3 2 = ( 3 ± 1 2 ) 3 = 3 3 ± 9 + 3 3 ± 1 2 2 = 3 3 ± 5 2 = ( 5 2 ) 2 + 1 ± 5 2 \begin{aligned} 2 \pm \sqrt 3 & = \frac {4 \pm 2\sqrt 3}2 = \left(\frac {\sqrt 3 \pm 1}{\sqrt 2} \right)^2 \\ \implies \sqrt{2 \pm \sqrt 3} & = \frac {\sqrt 3 \pm 1}{\sqrt 2} \\ \implies \left(2 \pm \sqrt 3\right)^\frac 32 & = \left(\frac {\sqrt 3 \pm 1}{\sqrt 2}\right)^3 \\ & = \frac {3\sqrt 3 \pm 9 + 3\sqrt 3 \pm 1}{2\sqrt 2} \\ & = \frac {3\sqrt 3 \pm 5}{\sqrt 2} \\ & = \sqrt{\left(\frac 5{\sqrt 2}\right)^2 + 1} \pm \frac 5{\sqrt 2} \end{aligned}

Therefore, log 2 + 3 ( ( 5 2 ) 2 + 1 + 5 2 ) + log 2 3 ( ( 5 2 ) 2 + 1 5 2 ) = 3 2 + 3 2 = 3 \log_{2+\sqrt 3} \left(\sqrt{\left(\dfrac 5{\sqrt 2}\right)^2 + 1} + \dfrac 5{\sqrt 2} \right) + \log_{2-\sqrt 3} \left(\sqrt{\left(\dfrac 5{\sqrt 2}\right)^2 + 1} - \dfrac 5{\sqrt 2} \right) = \dfrac 32 + \dfrac 32 = 3 , x = 5 2 = 50 2 \implies x = \dfrac 5{\sqrt 2} = \dfrac {\sqrt {50}}2 . And a + b + 27 = 50 + 2 + 27 = 79 a+b+27 = 50 + 2 + 27 =\boxed{79} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...