Nice identity

Calculus Level 3

n = 0 9 cos 4 ( n π 9 ) = a b \sum_{n=0}^{9} \cos^4\left(\dfrac{n\pi}{9}\right) =\dfrac{a}{b}

If the equation above holds true for coprime positive integers a a and b b , find the value of a + b a+b .

Posed by: Max Wong


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 18, 2019

S = n = 0 9 cos 4 ( n π 9 ) = n = 0 9 ( 1 sin 2 ( n π 9 ) ) 2 = n = 0 9 ( 1 1 2 ( 1 cos ( 2 n π 9 ) ) ) 2 = 1 4 n = 0 9 ( 1 + 2 cos ( 2 n π 9 ) + cos 2 ( 2 n π 9 ) ) = 1 4 n = 0 9 ( 3 2 + 2 cos ( 2 n π 9 ) + 1 2 cos ( 4 n π 9 ) ) = 3 8 n = 0 9 1 + 1 2 n = 0 9 cos ( 2 n π 9 ) + 1 8 n = 0 9 cos ( 4 n π 9 ) Note that n = 0 9 cos ( 4 n π 9 ) = n = 0 9 cos ( 2 n π 9 ) = 3 8 ( 10 ) + 5 8 n = 0 9 cos ( 2 n π 9 ) = 15 4 + 5 8 ( cos 0 + n = 1 4 cos ( 2 n π 9 ) + n = 5 8 cos ( 2 n π 9 ) + cos 2 π ) See proof: k = 1 n cos ( 2 n π 2 n + 1 ) = 1 2 = 15 4 + 5 8 ( 1 1 2 n = 5 8 cos ( ( 9 2 n ) π 9 ) + 1 ) Note that cos ( π θ ) = cos θ = 15 4 + 5 8 ( 1 1 2 n = 1 4 cos ( ( 2 n 1 ) π 9 ) + 1 ) See proof: k = 1 n cos ( ( 2 n 1 ) π 2 n + 1 ) = 1 2 = 15 4 + 5 8 ( 1 1 2 1 2 + 1 ) = 15 4 + 5 8 = 35 8 \begin{aligned} S & = \sum_{n=0}^9 \cos^4 \left(\frac {n\pi}9 \right) \\ & = \sum_{n=0}^9 \left(1-\sin^2 \left(\frac {n\pi}9 \right) \right)^2 \\ & = \sum_{n=0}^9 \left(1- \frac 12 \left(1-\cos \left(\frac {2n\pi}9 \right) \right) \right)^2 \\ & = \frac 14 \sum_{n=0}^9 \left(1 + 2 \cos \left(\frac {2n\pi}9 \right) + \cos^2 \left(\frac {2n\pi}9 \right) \right) \\ & = \frac 14 \sum_{n=0}^9 \left(\frac 32 + 2 \cos \left(\frac {2n\pi}9 \right) + \frac 12 \cos \left(\frac {4n\pi}9 \right) \right) \\ & = \frac 38 \sum_{n=0}^9 1 + \frac 12 \sum_{n=0}^9\cos \left(\frac {2n\pi}9 \right) + \frac 18 \sum_{n=0}^9 \cos \left(\frac {4n\pi}9 \right) & \small \color{#3D99F6} \text{Note that }\sum_{n=0}^9 \cos \left(\frac {4n\pi}9 \right) = \sum_{n=0}^9 \cos \left(\frac {2n\pi}9 \right) \\ & = \frac 38(10) + \frac 58 \sum_{n=0}^9\cos \left(\frac {2n\pi}9 \right) \\ & = \frac {15}4 + \frac 58 \left(\cos 0 +{\color{#3D99F6} \sum_{n=1}^4\cos \left(\frac {2n\pi}9 \right)} + {\color{#D61F06} \sum_{n=5}^8\cos \left(\frac {2n\pi}9 \right)} + \cos 2\pi \right) & \small \color{#3D99F6} \text{See proof: }\sum_{k=1}^n\cos \left(\frac {2n\pi}{2n+1} \right) = - \frac 12 \\ & = \frac {15}4 + \frac 58 \left(1 {\color{#3D99F6} - \frac 12} {\color{#D61F06} - \sum_{n=5}^8\cos \left(\frac {(9-2n)\pi}9 \right)} + 1 \right) & \small \color{#D61F06} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ & = \frac {15}4 + \frac 58 \left(1 - \frac 12 {\color{#D61F06} - \sum_{n=1}^4\cos \left(\frac {(2n-1)\pi}9 \right)} + 1 \right) & \small \color{#D61F06} \text{See proof: }\sum_{k=1}^n\cos \left(\frac {(2n-1)\pi}{2n+1} \right) = \frac 12 \\ & = \frac {15}4 + \frac 58 \left(1 - \frac 12 {\color{#D61F06} - \frac 12} + 1 \right) \\ & = \frac {15}4 + \frac 58 = \frac {35}8 \end{aligned}

Therefore, a + b = 35 + 8 = 43 a+b = 35 + 8 = \boxed{43} .


Proof for k = 1 n cos 2 k 1 2 n + 1 π = 1 2 \color{#3D99F6} \displaystyle \sum_{k=1}^n \cos \frac {2k-1}{2n+1}\pi = \frac 12

Naren Bhandari
Jul 18, 2019

My approach

By Euler's Formula we have e i x = cos x + i sin x e 4 i x = ( cos x + i sin x ) 4 ( e 4 i x ) = cos 4 x = cos 4 x 6 cos 2 x sin 2 x + sin 4 x e^{ix } = \cos x + i\sin x \implies e^{4 ix } =(\cos x +i\sin x )^4 \\ \Re(e^{4i x} ) = \cos 4x = \cos^4 x -6\cos^2 x \sin^2x +\sin^4 x and simplifying the latter expression we have cos 4 x = cos 4 x + 4 cos 2 x + 3 8 cos 4 x = cos 4 x + 4 cos 2 x + 3 8 n = 0 9 cos 4 ( n π 9 ) = 1 8 n = 0 9 ( cos ( 4 n π 9 ) + 3 + 4 cos ( 2 n π 9 ) ) = 1 8 n = 0 9 ( ( e 4 n i π 9 ) + 3 + 4 ( e 2 n i π 9 ) ) = 30 + ( e 4 n i π 9 ) 9 1 e 4 n i π 9 1 + 4 ( e 2 n i π 9 ) 9 1 e 2 n i π 9 1 8 = 30 + 1 + 4 8 = 35 8 \cos^4x =\dfrac{\cos 4x +4\cos 2x +3}{8} \\ \sum \cos^4x =\sum\,\dfrac{\cos4x +4\cos 2x +3}{8}\\ \sum_{n=0}^9 \cos^4\left(\frac{n\pi}{9}\right) =\dfrac{1}{8}\sum_{n=0}^9\left(\cos \left(\frac{ 4 n\pi}{9}\right)+3 +4\cos\left(\frac{2n\pi}{9}\right)\right) \\ =\dfrac{1}{8}\sum_{n=0}^{9}\left(\Re(e^{\frac{4ni\pi}{9}})+3 +4\Re (e^{\frac{2ni\pi}{9}}) \right)\\=\dfrac{30+\dfrac{\left(e^{\frac{4ni\pi}{9}}\right)^9 -1}{e^{\frac{4ni\pi}{9}}-1} +4\dfrac{\left(e^{\frac{2ni\pi}{9}}\right)^9 -1}{e^{\frac{2ni\pi}{9}}-1}}{8}\\ =\dfrac{30+1+4}{8}=\dfrac{35}{8} and hence a + b = 35 + 8 = 43 a+b=35+8=43

@Naren Bhandari , you have to mention "coprime positive integers". Because 35 8 \dfrac {-35}{-8} is also a solution, then a + b = 43 a+b = - 43 . Also, "If .... , \color{#D61F06}, find ..." There is a comma between the two clauses when "if" is used.

Chew-Seong Cheong - 1 year, 10 months ago

Log in to reply

I see the problem has been edited. Thank you this sir :D . I'm not good at english. 😁

Naren Bhandari - 1 year, 10 months ago

Log in to reply

Frankly friend, I find you have incorrect learning attitude. I see that you have not improve you LaTex usage. I remember I have shown you shortcuts but you still use the old ways. You don't explore and improve. I think that is why your English has not improve too. You just tell yourself that your English is no good and that is.

Chew-Seong Cheong - 1 year, 10 months ago

Just curious, why the problem title? The answer (even as a fraction) is definitely not just less than 1...

Chris Lewis - 1 year, 10 months ago

Log in to reply

35 8 = 36 1 9 1 = 9 × 4 1 9 × 1 1 \dfrac{35}{8}=\dfrac{36-1}{9-1}=\dfrac{9\times 4 -1}{9\times 1 -1} . I wish to set the title as per above work. But i cannot word it well. Moreover , its generalizable problem 😁

Naren Bhandari - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...