Just limiting sums

Calculus Level 5

lim n 1 1 n r + 2 1 n 1 r + 3 1 n 2 r + + n 1 n 4 \lim_{n \to \infty} \frac{1 \displaystyle \sum_{1}^{n} r + 2 \displaystyle \sum_{1}^{n-1} r + 3 \displaystyle \sum_{1}^{n-2} r +\cdots + n \cdot 1}{n^{4}}

Find the reciprocal of the limit above.


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ruofeng Liu
Nov 27, 2019

L = lim n k = 0 n k ( n + 1 k ) ( n + 2 k ) 2 n 4 L=\displaystyle{\lim_{n\to \infty}{\sum_{k=0}^{n}{\frac{k(n+1-k)(n+2-k)}{2n^4}}}}

= lim n 1 2 n k = 0 n k n ( 1 + 1 n k n ) ( 1 + 2 n k n ) =\displaystyle{\lim_{n\to \infty}{\frac{1}{2n}\sum_{k=0}^{n}{\frac{k}{n}(1+\frac{1}{n}-\frac{k}{n})(1+\frac{2}{n}-\frac{k}{n})}}}

= 0 1 x ( 1 x ) 2 d x = 24 =\displaystyle{\int_0^1{x(1-x)^2 \,dx}}=24

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...