Just look at it

Algebra Level 4

If g ( x ) = x 1 + 2 1 + e x g\left( x \right) =x-1+\dfrac { 2 }{ 1+{ e }^{ x } } , then g g is a/an:

Odd function Even function Neither odd nor even function

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 23, 2016

g ( x ) = x 1 + 2 1 + e x g ( x ) = x 1 + 2 1 + e x = x 1 + 2 e x 1 + e x = ( x 1 + 2 1 + e x ) 1 + 2 1 + e x 1 + 2 e x 1 + e x = ( x 1 + 2 1 + e x ) 2 + 2 ( 1 + e x 1 + e x = g ( x ) + 0 \begin{aligned} g(x) & = x - 1 + \frac{2}{1+e^x} \\ \Rightarrow g(-x) & = -x - 1 + \frac{2}{1+e^{-x}} \\ & = -x - 1 + \frac{2e^x}{1+e^x} \\ & = - \left(x - 1 + \frac{2}{1+e^x} \right) - 1 + \frac{2}{1+e^x} - 1 + \frac{2e^x}{1+e^x} \\ & = - \left(x - 1 + \frac{2}{1+e^x} \right) - 2 + \frac{2(1+e^x}{1+e^x} \\ & = -g(x) + 0 \end{aligned}

g ( x ) = g ( x ) g ( x ) is odd . \Rightarrow g(-x) = - g(x) \quad \Rightarrow g(x) \text{ is } \boxed{\text{odd}}.

Mohtasim Nakib
Jan 24, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...