Just Make it look Simpler

Calculus Level 3

d d x ( x 2 3 ( arccos ( t ) 2 ) d t ) = ? \large\frac{d}{dx}\left(\int_{x^{2}}^{3} (\arccos(t)-2) \, dt\right) =\, ?

3 x ( 2 + arccos ( x 2 ) ) 3x( 2 +\arccos(x^{2})) 2 x ( 2 arccos ( x 2 ) ) 2x( 2- \arccos(x^{2})) 2 x ( 2 + arccos ( x 2 ) ) 2x( 2+ \arccos(x^{2})) 2 x ( 3 arccos ( x 2 ) ) 2x( 3 - \arccos(x^{2}))

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
Jun 16, 2016

d d x ( x 2 3 ( arccos ( t ) 2 ) d t ) \large\frac{d}{dx}\left(\int_{x^{2}}^{3} (\arccos(t)-2)dt\right)

= d d x [ 3 x 2 ( a r c c o s ( t ) 2 ) d t ] \large\frac{d}{dx}[-\int_{3}^{x^2}(arccos(t)-2)dt]

= ( 1 ) d d x [ 3 x 2 ( a r c c o s ( t ) 2 ) d t ] \large(-1)\frac{d}{dx}[\int_{3}^{x^{2}}(arccos(t)-2)dt]

= ( 2 x ) [ ( a r c c o s ( x 2 ) 2 ) ] \large(-2x)[(arccos(x^{2})-2)]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...