Just multiply it

Algebra Level 4

If a + b = 2 a+ b = 2 and a 3 + b 3 = 38 a^3 + b^3 = 38 , find the product of all possible values of a a and b b .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Quadratic equation of a : a 3 + b 3 = ( a + b ) ( ( a b ) 2 ) 38 = 2 ( a 2 + b 2 a b ) 38 = 2 ( ( a b ) 2 + a b ) 19 = ( a b ) 2 + a b 19 = ( a ( 2 a ) ) 2 + a ( 2 a ) 19 = 4 a 2 8 a + 2 2 + 2 a a 2 19 = 6 a + 3 a 2 + 4 15 = 3 a 2 6 a 0 = 3 a 2 6 a 15 By using Vieta’s formula, a 1 × a 2 = 15 3 = 5 Quadratic equation of b : 19 = ( a b ) 2 + a b 19 = ( ( 2 b ) b ) 2 + ( 2 b ) b 19 = 4 + 4 b 2 8 b + 2 b b 2 19 = 6 b + 3 b 2 + 4 15 = 3 b 2 6 b 0 = 3 b 2 6 b 15 By using Vieta’s formula, b 1 × b 2 = 15 3 = 5 Now multiply the possibility, a 1 × a 2 × b 1 × b 2 = 5 × 5 = 25 \begin{aligned} \text{Quadratic equation of } \space a \text{:} \space \\ a^3 + b^3 & = (a+b)((a-b)^2) \\ 38 & = 2(a^2+b^2-ab) \\ 38 & = 2((a-b)^2 + ab)\\ 19 & = (a-b)^2 + ab \\ 19 & = (a-(2-a))^2 + a(2-a) \\ 19& = 4a^2 - 8a + 2^2 + 2a - a^2\\ 19 & = -6a + 3a^2 + 4 \\ 15 & = 3a^2 - 6a \\ 0 & = 3a^2 - 6a - 15 \\ \text{By using Vieta's formula,}\\ a_1 \times a_2 & = \frac{-15}{3} \\ &= -5\\ \text{Quadratic equation of } \space b \text{:} \space \\ 19 & = (a-b)^2 + ab \\ 19 & = ((2-b)-b)^2 + (2-b)-b \\ 19& = 4+4b^2-8b+2b-b^2\\ 19 & = -6b + 3b^2 + 4 \\ 15 & = 3b^2 - 6b \\ 0 & = 3b^2 - 6b - 15 \\ \text{By using Vieta's formula,}\\ b_1 \times b_2 & = \frac{-15}{3} \\ &= -5\\ \text{Now multiply the possibility,}\\ a_1 \times a_2 \times b_1 \times b_2 & = -5 \times -5\\ & = \color{#D61F06}{\boxed{25}}\\ \end{aligned}

Very neat solution! +1

Pi Han Goh - 5 years ago

Log in to reply

:) Thx. Calvin teach me how to be neat when writing solution

Jason Chrysoprase - 5 years ago

Awesome (+1)

Ashish Menon - 5 years ago
Manuel Kahayon
Jun 4, 2016

a + b = 2 a+b=2

( a + b ) 3 = a 3 + 3 ( a b ) ( a + b ) + b 3 = 8 (a+b)^3=a^3+3(ab)(a+b)+b^3=8

Since a + b = 2 a+b=2 and a 3 + b 3 = 38 a^3+b^3=38 , ( 3 ) ( a b ) ( 2 ) + 38 = 8 (3)(ab)(2)+38=8 , giving us a b = 5 ab=-5 .

Now, since we are given the sum and the product of two numbers, we can deduce that solving for a a and b b will give us a quadratic equation for both a a and b b . Letting the two values of a a and b b be a 1 , a 2 a_1,a_2 and b 1 , b 2 b_1,b_2 respectively, we get that if a = a 1 a=a_1 , b = b 1 b=b_1 and so on, so we get that a 1 b 1 = a 2 b 2 = 5 a_1b_1=a_2b_2=-5 . So, a 1 b 1 a 2 b 2 = ( 5 ) ( 5 ) = 25 a_1b_1a_2b_2 = (-5)(-5) = \boxed {25} .

Anand Gokhale
Jun 14, 2016

a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})

        38=2( ( a + b )^{2} - 3ab )

        19=4 - 3ab

         -5=ab

There are 2 possibilities:

    a=x , b= -5/x

    or a= -5/x , b = x

(for some x which is a solution of (x-a)(x-b)=0)

Product of all possible a's and b's =5*5=25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...