Just my imagination - 2

Geometry Level 2

As I fly in my helicopter over the ocean, I see my reflection on the surface of the water. Which of the following is true?

A. Speed of my helicopter is less than the reflection.
B. Speed of my reflection is less than the helicopter.
C. Both are equal.
D. Can't say, sometimes more or less.

Assume that the earth is a perfect sphere.

C A D B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Daniel Liu
Jun 22, 2014

In easy way to see that it is B B is to imagine you are orbiting a tiny marble a mile away. By the time you orbit once, your reflection has only gone around the tiny marble, while you have gone over 6 miles in the same amount of time.

Thus, the speed of you is higher than of your reflection.

Oops i was thinking the reflection as in like the speed of light ¨ \ddot \frown

David Lee - 6 years, 11 months ago

Log in to reply

1.the angular velocity is the same but since the man is traveling in a path with larger radius that makes his linear speed more

2.. alternately even if we look at it the other way then light takes extra time to go from man to water then back to his eyes in order for him to see his image... that means his reflection will always lag by 2d/c seconds (d is distance between man and water , c is speed of light)

aroop kundu - 6 years, 11 months ago

Log in to reply

It will lag but it will still be faster. If you are running in front of me and I am keeping pace behind you, but you are running in a straight line and I am doing zig-zags, then I am running faster even though you are in front of me.

Kaden Bea - 6 years, 11 months ago

I too was thinking on the same way.

trivendra joshi - 6 years, 11 months ago

Your analogy is not quite correct. Diameter of Earth is a million times the height at which the helicopter is flying. But the analogy drives home the point. Thanks S M Thatte

Shashikant Thatte - 6 years, 11 months ago

Yes I thought the same way.

Manish Mayank - 6 years, 11 months ago

Wahaahahahaha So in simpler terms, Mr. Daniel Liu, The Helo's speed is faster than its shadow because the Earth is round? Hahahahahahahahahahaha Okay... :-/

Mags Gertos - 6 years, 11 months ago

please be more relevent

Abhishek Verma - 6 years, 11 months ago

light also needs some time (very very less but still) to travel. By the time it travels the helicopter has moved some unit distance

Arani Ray - 6 years, 11 months ago

this question is a bit incomplete.. since speed and other factors like nearness to ocean surface etc does matter.

faisal khan - 6 years, 11 months ago

Log in to reply

That is true. I've added the assumption that the earth is a perfect sphere. If we were flying over mountains with a great change in height, that would affect the vertical (normal to the surface) speed of the shadow, even though the tangential component would be smaller.

Calvin Lin Staff - 6 years, 11 months ago

The same way that a spot closer to the center of a disc (eg CD) moves less than a spot on the circumference!

Ritvik Chaturvedi - 6 years, 11 months ago
Muralidhar Kamidi
Jun 23, 2014

Reflection executes a smaller circle compared to your flying machine, in the same time interval.

The reflection will always lag behind the actual object (i.e. helicopter). However, in circumstances where the object is moving at a constant speed for a "long" enough period of time, the reflection will have the same speed as the actual object. Granted, the reflection is going to be permanently 'behind' the actual object, but that delay is constant (i.e. the amount of time it takes for the light to travel from where the object is located to where the reflection is made and back to the viewer). In other words, the speed of the reflection can easily be equal to the speed of the helicopter; however, the position of the reflection will almost always be behind that of the helicopter.

For the reasoning stated above, I believe the answer should be none of the ones given. The answer should be something along the lines of "sometimes equal, sometimes less (but never more)"

Paul Paik - 6 years, 11 months ago

Log in to reply

that's what I thought...

Harry Tippetts - 6 years, 11 months ago

My reflection is merely a phenomenon of light. My reflection moves at the speed of light. My helicopter doesn't move anywhere near that fast.

Curtis Norris - 6 years, 11 months ago

Log in to reply

Your reflection is "generated" at the speed of light but the speed of the movement of your reflection depends on other factors like your own movement and the distance cut by reflection relative to distance cut by ourself because however fast the reflection is generated, in the end it must cling to your movement. Don't confuse generation of reflection and movement of reflection.

eslam hussien - 6 years, 5 months ago
Ahmed Obaiedallah
May 27, 2015

well I already know that

v = ω × r v=ω\times{r}

where

v:linear velocity

ω:angular velocity

r: radius

But since this is geometry so lets go back one step by integration

s = θ × r s=\theta \times{r}

where

s: circumference distance , θ \theta : rotational angle , r: radius

so if you change the radius "S "will change as well in a direct relationship ,then at any given\certain moment" θ \theta " if we took two arbitrary points "a",and "b" one on the surface and the other above it (respectfully), with the condition that they always lie on the same line and it must go through the center of the sphere (the reflection)

Point "b" the one above must be always faster than point "a" the one on surface to fulfill that condition (reflection)

or you can simply differentiate the "S" equation with respect to time to obtain the "V" equation first one above, noting that ω is constant

you can also imagine two track runners one in the nearest lane the other in the farthest lane in circular track with yourself as an observer at the center and they're always perfectly aligned to you

Eslam Hussien
Jan 10, 2015

Let their be a circle resembling earth. Let their be another concentric circle bigger than it resembling the route taken by helicopter. Let their be two points anywhere on the bigger circle resembling the start point A and end point B of the helicopter. construct a radius out of the two previous points A and B. Let the intersection of the two radiuses with the smaller circle (earth) be two points named a' and b' . The chord AB is bigger than chord a'b'. Therefore, Distance cut by helicopter d(X) is bigger than distance cut by reflection d(Y). Since the time taken by the helicopter to cut chord AB (T1) is the same as the time taken by the reflection to cut chord a'b' (T2). Therefore, d ( Y ) T 2 \frac{d(Y)}{T2} < d ( X ) T 1 \frac{d(X)}{T1} . Since v=d/t, Therefore, the speed of reflection is less than that of the helicopter.

Andrew Rakich
Dec 31, 2014

Depending on the height of your helicopter, the height of the image varies between r-h (when your height h above Earth's surface is zero) to r/2 when your height is at infinity and r is the radius of the Earth (discounting "spherical aberration", Wikipedia it). So for practical helicopters, the image height is something like r-h. And the helicopter height is r+h. And the image and object travel at the same angular velocity, Instantaneous velocity is angular velocity * radius, so the greater radius (object) has the greater velocity. I have drunk quite a few beers and gluwine (new years eve) so apologies in advance for any lack of claret-y...

Bj Prognome
Jul 18, 2014

The speed of light may seem instant, but it isn't. It takes time for the reflection to catch up with the changes you make to yourself.

Vijay Jadhav
Jun 26, 2014

Helicopter is source for reflaction here, so speed of reflaction will always less than holicopter, however that differnce in speed is Negligible...

I don't know. Ha ha ..........

same feeling

Mani Kandan - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...