Just (not) Binomial Theorem

( 1 + x ) 1000 + 2 x ( 1 + x ) 999 + 3 x 2 ( 1 + x ) 998 + + 1001 x 1000 (1+x)^{1000}+2x(1+x)^{999}+3x^2(1+x)^{998}+\cdots+1001x^{1000}

If the coefficient of x 50 x^{50} in the above expression is in the form ( 1002 k ) \dbinom{1002}{k} and k < 100 k<100 , then find the positive integer k k .

Notation: ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N! (M-N)!} denotes the binomial coefficient .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Nov 4, 2016

Let S = ( 1 + x ) 1000 + 2 x ( 1 + x ) 999 + 3 x 2 ( 1 + x ) 998 + 1001 x 1000 ( x 1 + x ) S = x ( 1 + x ) 999 2 x 2 ( 1 + x ) 998 1000 x 1000 1001 x 1001 1 + x Adding The two equations : 1 x + 1 S = ( 1 + x ) 1000 + x ( 1 + x ) 999 + x 2 ( 1 + x ) 998 + x 1000 1001 x 1001 1 + x x x + 1 × 1 x + 1 S = x ( 1 + x ) 999 x 2 ( 1 + x ) 998 x 3 ( 1 + x ) 997 x 1001 1 + x + 1001 x 1002 ( 1 + x ) 2 Adding the two equations : 1 ( 1 + x ) 2 S = ( 1 + x ) 1000 1002 x 1001 1 + x + 1001 x 1002 ( 1 + x ) 2 S = ( 1 + x ) 1002 1002 x 1001 ( 1 + x ) + 1001 x 1002 co-efficient of x 50 can only be obtained from ( 1 + x ) 1002 which is ( 1002 50 ) Our answer is : k = 50 \text{Let } S= (1+x)^{1000}+2x(1+x)^{999}+3x^2(1+x)^{998}\cdots+1001x^{1000} \\ \left( \dfrac{-x}{1+x}\right)S=-x(1+x)^{999}-2x^2(1+x)^{998}-\cdots-1000x^{1000}-1001\dfrac{x^{1001}}{1+x} \\ \text{Adding The two equations : } \\ \dfrac{1}{x+1}S=(1+x)^{1000}+x(1+x)^{999}+x^2(1+x)^{998}\cdots+x^{1000}-1001\dfrac{x^{1001}}{1+x} \\ \dfrac{-x}{x+1}\times \dfrac{1}{x+1}S =-x(1+x)^{999}-x^2(1+x)^{998}-x^3(1+x)^{997}\cdots-\dfrac{x^{1001}}{1+x}+1001\dfrac{x^{1002}}{(1+x)^2} \\ \text{Adding the two equations : } \\ \dfrac{1}{(1+x)^2}S= (1+x)^{1000}-1002\dfrac{x^{1001}}{1+x}+1001\dfrac{x^{1002}}{(1+x)^2} \\ S= (1+x)^{1002}-1002x^{1001}(1+x)+1001x^{1002} \\ \text{co-efficient of } x^{50} \text{ can only be obtained from } (1+x)^{1002} \text{ which is } \dbinom{1002}{50} \\ \text{Our answer is : } \boxed{k=50}

Another way to do this would be to note that the required coefficient is given by the sum k = 0 50 ( k + 1 ) ( 1000 k 50 k ) \sum\limits_{k=0}^{50}(k+1)\dbinom{1000-k}{50-k} which can be shown to equal ( 1002 50 ) \binom{1002}{50} using Pascal's rule (to convert the sum to a telescoping series) and elementary properties of binomial coefficients.

Prasun Biswas - 4 years, 7 months ago

Awesome Solution! :)

Prakhar Bindal - 4 years, 7 months ago

Log in to reply

Thank you 😃 !

Sabhrant Sachan - 4 years, 7 months ago

Good solution but over rated qs a bit...(+1) tho!!!!

rajdeep brahma - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...