Just observe it

Algebra Level 4

f ( 1 ) + f ( 2 ) + f ( 3 ) + + f ( n ) = n 2 f ( n ) \large f(1) + f(2)+ f(3) + \ldots + f(n) = n^2 f(n)

Consider a function f ( x ) f(x) satisfying the equation above for n 1 n \geq 1 with f ( 1 ) = 2005 f(1) = 2005 .

Find the sum of digits of 1 f ( 2004 ) . \dfrac{1}{f(2004)}.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Satyendra Kumar
May 13, 2015

First thing we get that, n = 1 n 1 f ( n ) = f ( n ) ( n 2 1 ) . . . . . . . . . . . . . . ( 1 ) n = 1 n 2 f ( n ) = f ( n 1 ) ( ( n 1 ) 2 1 ) . . . . . . . . . . . . . . ( 2 ) ( 1 ) ( 2 ) = f ( n 1 ) = f ( n ) ( n 2 1 ) f ( n 1 ) ( n 2 2 n ) f ( n 1 ) ( 1 + n 2 2 n ) = f ( n ) ( n 2 1 ) f ( n 1 ) ( ( n 1 ) 2 ) = f ( n ) ( n 1 ) ( n + 1 ) f ( n 1 ) ( n 1 ) = f ( n ) ( n + 1 ) f ( n ) f ( n 1 ) = n 1 n + 1 \sum_{n=1}^{n-1} f(n)=f(n)(n^2-1)..............(1)\\ \sum_{n=1}^{n-2} f(n)=f(n-1)((n-1)^2-1)..............(2)\\ \Longrightarrow (1)-(2)=f(n-1)=f(n)(n^2-1)-f(n-1)(n^2-2n)\\ \Longrightarrow f(n-1)(1+n^2-2n)=f(n)(n^2-1)\\ \Longrightarrow f(n-1)((n-1)^2)=f(n)(n-1)(n+1)\\ \Longrightarrow f(n-1)(n-1)=f(n)(n+1)\\ \Longrightarrow \dfrac{f(n)}{f(n-1)}=\dfrac{n-1}{n+1} .Now,you can put values and multiply and all the terms except for two will cancel.: f ( 2 ) f ( 1 ) × f ( 3 ) f ( 2 ) × f ( 4 ) f ( 3 ) . . . × f ( 2003 ) f ( 2002 ) × f ( 2004 ) f ( 2003 ) = 2003 ! 1 2005 ! 2 = 1 1 2005 × 2004 2 = 1 2005 × 1002 \dfrac{f(2)}{f(1)}\times \dfrac{f(3)}{f(2)}\times \dfrac{f(4)}{f(3)}...\times\dfrac{f(2003)}{f(2002)}\times \dfrac{f(2004)}{f(2003)}\\ =\dfrac{\dfrac{2003!}{1}}{\dfrac{2005!}{2}}\\ =\dfrac{\dfrac{1}{1}}{\dfrac{2005\times 2004}{2}} =\dfrac{1}{2005\times 1002} .And the L.H.S = f ( 2004 ) f ( 1 ) \text{L.H.S}=\dfrac{f(2004)}{f(1)} .Hence, f ( 2004 ) f ( 1 ) = 1 2005 × 1002 f ( 2004 ) 2005 = 1 2005 × 1002 1 f ( 2004 ) = 1002. \dfrac{f(2004)}{f(1)}=\dfrac{1}{2005\times 1002}\\ \Longrightarrow \dfrac{f(2004)}{2005}=\dfrac{1}{2005\times 1002}\\ \Longrightarrow \dfrac{1}{f(2004)}=1002. Hence answer is 3 \huge{\boxed{\boxed{3}}} .

Moderator note:

Yes telescoping product is the key here! This is one way to find the answer without explicitly determining the formula for f ( n ) f(n) . Well done.

Did it the same way.

Shanthanu Rai - 5 years, 2 months ago
Nishu Sharma
May 13, 2015

Induction:

f ( 1 ) = a 1 , f ( 2 ) = a 3 , f ( 3 ) = a 6 , f ( 4 ) = a 10 , f ( 5 ) = a 15 . . . . . . . . f ( 1 ) = a 1 , f ( 2 ) = a 3 d i f f o f D r = 2 , f ( 2 ) = a 3 , f ( 3 ) = a 6 d i f f o f D r = 3 , f ( 3 ) = a 6 , f ( 4 ) = a 10 d i f f o f D r = 4 , f ( 4 ) = a 10 , f ( 5 ) = a 15 d i f f o f D r = 5 . . . . . \displaystyle{f\left( 1 \right) =\cfrac { a }{ 1 } \quad ,f(2)=\cfrac { a }{ 3 } ,\quad f(3)=\cfrac { a }{ 6 } ,\quad f(4)=\cfrac { a }{ 10 } ,\quad f(5)=\cfrac { a }{ 15 } ........\\ \underbrace { f\left( 1 \right) =\cfrac { a }{ 1 } \quad ,f(2)=\cfrac { a }{ 3 } }_{ diff\quad of\quad Dr\quad =2 } ,\quad \underbrace { f(2)=\cfrac { a }{ 3 } ,\quad f(3)=\cfrac { a }{ 6 } }_{ diff\quad ofDr\quad =3 } ,\quad \underbrace { f(3)=\cfrac { a }{ 6 } ,\quad f(4)=\cfrac { a }{ 10 } }_{ diff\quad of\quad Dr=4 } ,\underbrace { f(4)=\cfrac { a }{ 10 } ,\quad f(5)=\cfrac { a }{ 15 } }_{ diff\quad of\quad Dr=5 } \quad .....}

Clearly Denominator (Dr) terms have 2nd order difference constant , So it must satisfy 2nd order polynomial , Hence

D n = A n 2 + B n + c D 1 = 1 , D 2 = 3 , D 3 = 5 D n = n ( n + 1 ) / 2 f ( n ) = 2 a D n = 2 f ( 1 ) n ( n + 1 ) \therefore \quad { D }_{ n }=A{ n }^{ 2 }+Bn+c\\ \because { D }_{ 1 }=1\quad ,\quad { D }_{ 2 }=3\quad ,\quad { D }_{ 3 }=5\quad \\ \Rightarrow { D }_{ n }=n(n+1)/2\\ f(n)=\cfrac { 2a }{ { D }_{ n } } =\cfrac { 2f\left( 1 \right) }{ n(n+1) }

Now re-checking this by induction . f o r n = 1 : R H S = 2 f ( 1 ) 1.2 = f ( 1 ) = L H S for\quad n=1\quad :\quad RHS=\cfrac { 2f(1) }{ 1.2 } =f(1)=LHS

Let f(K) is true for some K , then we have to prof f(K+1) is also true , to complete our target .

f o r n = K : f ( k ) = 2 f ( 1 ) k ( k + 1 ) . . . . ( A ) f o r n = K + 1 : R H S = 2 f ( 1 ) ( k + 1 ) ( K + 2 ) = f ( K + 1 ) = L H S H e n c e f ( n ) = 2 f ( 1 ) n ( n + 1 ) n N \displaystyle{for\quad n=K\quad \quad \quad :\quad f(k)=\cfrac { 2f(1) }{ k(k+1) } \quad ....(A)\\ for\quad n=K+1\quad :\quad RHS=\cfrac { 2f(1) }{ (k+1)(K+2) } =f(K+1)=LHS\\ \\ Hence\quad \boxed { f(n)=\cfrac { 2f\left( 1 \right) }{ n(n+1) } \quad \forall n\in N } }

With f ( 1 ) = 2005 , f ( 2004 ) = 2 × 2005 2004 × 2005 = 1 1002 f(1) = 2005, f(2004) = \frac{2 \times 2005}{2004\times 2005} = \frac1{1002} . Answer is simply 1 + 0 + 0 + 2 = 3 1+0+0+2=3 .

Moderator note:

You can simplify your first half of your work by observing that the denominators of f ( n ) f(n) are triangular numbers, so you can move to induction step immediately. Good work nonetheless.

@Nishu sharma , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...